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Overview

1. Positive de�nite Hankel matrices H and their sections HN

2. Hamburger moment problems: Determinacy versus
indeterminacy

3. Behaviour of the smallest eigenvalue of HN

4. A digression about the Hilbert matrix

5. The reproducing kernel of an indeterminate moment
problem and the in�nite matrix A
6. Is A an inverse of H?
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In�nite Hankel matrices

Given a sequence (sn)n≥0 of real numbers, we consider the in�nite

Hankel matrix H = {sj+k}∞j ,k=0

H =


s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
...

...
...

. . .


Hamburger proved around 1920 that H is positive de�nite in the

sense that

(Hv , v) > 0, v = (v0, v1, . . . , vn, 0, 0, . . .), v 6= 0,

if and only if

sn =

∫ ∞
−∞

xn dµ(x), n ≥ 0 (1)

for a positive measure µ on R with in�nite support.
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The �nite truncations

An equivalent formulation is that all the �nite sections

HN = {sj+k}, 0 ≤ j , k ≤ N

are positive de�nite matrices or that

DN = detHN > 0, N = 0, 1, . . . .

The moment sequence (sn) can be determinate or indeterminate in

the sense that the moment equation can have exactly one solution

µ or several solutions µ.
Hamburger gave various characterizations of determinacy, I will

come back to some of them. He missed however the following:
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A theorem of B, Chen and Ismail

Let λN be the smallest eigenvalue of of the positive de�nite matrix

HN ,

λN = min{(HNv , v) | v ∈ RN+1, ||v || = 1} > 0.

Therefore λN ≥ λN+1, hence

λ∞ := lim
N→∞

λN exists, and λ∞ ≥ 0.

The number λ∞ characterizes determinacy:

Theorem (B-C-I, Math. Scand. 2002)

λ∞ = 0 if and only if (sn) is determinate.
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Photo of Hans Ludwig Hamburger (1889-1956)

Interesting biography of Hamburger in MacTutor History of

Mathematics archive at St. Andrews

Christian Berg Hankel matrices



The orthonormal polynomials associated with (sn) and µ

Gram-Schmidt procedure to 1, x , x2, . . . in L2(µ) leads to an

orthonormal sequence Pn(x), n = 0, 1, . . ., i.e.∫
Pn(x)Pm(x) dµ(x) = δnm. (∗)

Notice: (Pn) is independent of the choice of µ in the

indeterminate case.

The assumption Pn(x) polynomial of degree n with positive leading

coe�cient together with (∗) determines (Pn) uniquely. It can be

calculated from the moments sn via the formula

Pn(x) =
1√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1
...

...
. . .

...

sn−1 sn · · · s2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
, Dn = detHn.
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Characterization of indeterminacy (Hamburger)

The following conditions are equivalent:

(i) Indeterminacy

(ii)
∑∞

0 |Pn(i)|2 <∞
(iii) P2(z) :=

∑∞
0 |Pn(z)|2 <∞ for all z ∈ C.

In (iii) the series converges uniformly on compact subsets of C.
The moment problems corresponding to the classical orthogonal

polynomial systems: Hermite, Laguerre, Jacobi, Legendre,

Chebyshev are determinate.

If µ has compact support it is determinate.

Stieltjes (1894) gave the �rst examples of indeterminate measures,

e.g. the lognormal distribution in statistics. The orthogonal

polynomials are called Stieltjes-Wigert polynomials.
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The classical treatises of the moment problem

Hamburger's theorem and the spectral theorem for self-adjoint

operators in Hilbert space are closely related. One can deduce each

of the theorems from the other.

Marshall Stone: Linear transformations in Hilbert space, 1932

treats the moment problem as an application of the theory of

self-adjoint extensions of symmetric operators.

Monographs:

J. Shohat, J.D. Tamarkin, The Problem of Moments, 1943

N.I. Akhiezer: The classical moment problem, 1965 (Russian

edition 1961).

New treatment:

B. Simon, The classical moment problem as a self-adjoint �nite

di�erence operator. Adv. Math. 137 (1998), 82�203.
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My mathematical hero: N.I. Akhiezer (1901-1980)
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A lower bound for λ∞ in the indeterminate case

In the indeterminate case

λ∞ ≥
(

1

2π

∫ 2π

0

P2(e iθ) dθ

)−1
> 0,

where

P2(z) =
∞∑
n=0

|Pn(z)|2, z ∈ C.

So far there are no formulas expressing λ∞ by other known

quantities.
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Indeterminate case: The log-normal moments

0 < q < 1: log-normal moments are sn = q−n(n+2)/2 given by
√
q√

2π log(1/q)

∫ ∞
0

xn exp

(
− (log x)2

2 log(1/q)

)
dx .

De�ning

h(x) = sin(
2π

log(1/q)
log x)

then the non-negative densities (−1 ≤ r ≤ 1)
√
q√

2π log(1/q)
exp

(
− (log x)2

2 log(1/q)

)
[1 + rh(x)]

and the discrete measures (a > 0)

1

L(a)

∞∑
k=−∞

akqk(k+2)/2δaqk

all have the log-normal moments.
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Correspondence between Stieltjes and Hermite

Stieltjes to Hermite: January 30, 1892

�L'existence de ces fonctions ϕ(x) qui, sans être nulles, sont telles

que ∫ ∞
0

xnϕ(x) dx = 0, n = 0, 1, . . . ,

me paraît très remarquable�

ϕ(x) = sin

(
2π

log(1/q)
log x

)
exp

(
− (log x)2

2 log(1/q)

)
is one of these functions.
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The behaviour of λN in some classical cases

In case of Hermite and Laguerre polynomials Szeg® (1936) found

the asymptotic behaviour

λN ∼ AN1/4B
√
N

for certain explicit values A > 0, 0 < B < 1. Szeg® also found the

asymptotics for Legendre polynomials and this was generalized by

Widom and Wilf (1966) for measures µ in the so-called Szeg® class

meaning that µ has a density w(x) on a compact interval [a, b]
satis�ying ∫ b

a

logw(x)√
(x − a)(b − x)

dx > −∞.

The behaviour is

λN ∼ AN1/2BN ,

where A,B are certain constants as above.
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Orthogonal polynomials and Favard's theorem

The orthonormal polynomials (Pn) satisfy a three-term recurrence

relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x), n ≥ 0, (3trl)

where an ∈ R and bn > 0.

Conversely, given two sequences (an), (bn) of respectively real and

positive numbers, then (3trl) together with the initial conditions

P−1(x) = 0,P0(x) = 1 determine polynomials Pn of degree n and

they are orthonormal with respect to one or several measures µ
with in�nite support.

This is Favard's Theorem (1935)
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The spectral theory of Jacobi matrices

The study of orthonormal polynomials is equivalent to study

symmetric Jacobi matrices de�ned in terms of an ∈ R and bn > 0

J =


a0 b0 0 0 · · ·
b0 a1 b1 0 · · ·
0 b1 a2 b2 · · ·

0 0 b2 a3
. . .

...
...

...
...

...


acting as a densely de�ned symmetric operator in `2 with the

standard orthonormal basis (en). The moments can be calculated

from J via and sn = (Jne0, e0).

J has either de�ciency indices (0, 0) (the determinate case) or

(1, 1) (the indeterminate case).
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Work by B and Szwarc (2011) about λN

From this work I shall mention 3 results.

The �rst one is that one has exponential decay to 0 in case of

compact support.

Theorem (Exponential decay)

Suppose (bn) bounded and b := lim sup bn. Then

lim supλ
1/N
N ≤ 2b2

1 + 2b2

and hence

λN ≤ ABN , for suitable A > 0, 0 < B < 1.

In particular this holds for any measure µ with compact support.

Christian Berg Hankel matrices



Work by B and Szwarc (2011) � slow and fast decay

The eigenvalues λN for a determinate moment problem can decay

to zero arbitrarily slow or arbitrarily fast:

Theorem (slow decay)

Let (τn) be a decreasing sequence of positive numbers satisfying

τn → 0 and τ0 < 1/2. Then there exists a determinate symmetric

probability measure µ on R for which λN ≥ τN for all N.

Theorem (fast decay)

Let (τn) be a decreasing sequence of positive numbers satisfying

τn → 0 and τ0 = 1. Then there exists a determinate symmetric

probability measures µ for which λN ≤ τN for all N.
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The inverses of the Hankel matrices HN (Aitken(1939))

De�ne the coe�cient matrix

AN =
(
a
(N)
j ,l

)N
j ,l=0

, KN(x , y) =
N∑

n=0

Pn(x)Pn(y) =
N∑

j ,l=0

a
(N)
j ,l x jy l .

Then AN = H−1N . The proof is very simple: For 0 ≤ k ≤ N we

have by the reproducing property∫
xkKN(x , y) dµ(x) = yk .

On the other hand we have∫
xkKN(x , y) dµ(x) =

N∑
l=0

 N∑
j=0

sk+ja
(N)
j ,l

 y l ,

hence
N∑
j=0

sk+ja
(N)
j ,l = δk,l .
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A digression

For Lebesgue measure on [0, 1] we have

sn =

∫ 1

0

xn dx =
1

n + 1

so HN is the Hilbert matrix {1/(j + k + 1)}. The orthogonal

polynomials are Legendre polynomials

pn(x) =
1

n!
Dn[x(1− x)]n =

n∑
k=0

(−1)k
(
n

k

)(
n + k

n

)
xk

The orthonormal Legendre polynomials are

Pn(x) = (−1)n
√
2n + 1pn(x) so

KN(x , y) =
N∑

n=0

(2n + 1)pn(x)pn(y)

has integer coe�cients, i.e., H−1N has integer entries.
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Formal inverse of the in�nite Hankel matrix H

In the indeterminate case we know that

∞∑
n=0

|Pn(x)|2 <∞, x ∈ C

so we can consider the entire function on C2

K (x , y) =
∞∑
n=0

Pn(x)Pn(y) =
∞∑

j ,l=0

aj ,lx
jy l .

It is easy to see that a
(N)
j ,l → aj ,l for N →∞.

De�ne the in�nite symmetric matrix A = {aj ,l}.
Natural question:

Is HA = AH = I?
Since H and A are symmetric it is enough to verify AH = I.
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Preliminary comments to the question

By a famous result of Carleman:

Indeterminacy =⇒
∞∑
n=0

1
2n
√
s2n

<∞,

so 2n
√
s2n →∞, i.e., s2n →∞ quite fast and s2n ≥ 1 for n ≥ n0.

Therefore
∞∑
j=0

s2j+k =∞, k = 0, 1, . . . .

so H does not de�ne an operator on `2

Question: Is it true that

∞∑
k=0

|sj+kak,l | <∞, for all j , l ≥ 0?

If this is the case we say that AH is absolutely convergent ?
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Some answers

1: The answer is yes for Stieltjes-Wigert polynomials, i.e.

sn = q−n(n+2)/2, 0 < q < 1 (B-Szwarc 2011).

2: For any indeterminate moment problem the matrix A is of trace

class and
∞∑

j ,l=0

|aj ,l |ε <∞ for any ε > 0.

3: A is positive de�nite. Let cn =
√
an,n. Then lim n n

√
cn = 0 so

Φ(z) =
∞∑
n=0

cnz
n

is an entire function of minimal exponential type. Its order and type

are equal to the order and type of the indeterminate moment

problem, which is by de�nition the order and type of the entire

function zK (z , 0) (and of several other functions associated with

the indeterminate moment problem).
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Some auxiliary matrices B, C
We use the following notation for the orthonormal polynomials

Pn(x) = bn,nx
n + bn−1,nx

n−1 + . . .+ b1,nx + b0,n,

xn = cn,nPn(x) + cn−1,nPn−1(x) + . . .+ c1,nP1(x) + c0,nP0(x).

By the three-term recurrence relation we get

bn,n =
1

b0b1 . . . bn−1
, cn,n = b0b1 . . . bn−1. (2)

The matrices B = {bi ,j} and C = {ci ,j} with the assumption

bi ,j = ci ,j = 0 for i > j

are upper-triangular. Since B and C are transition matrices between

two sequences of linearly independent systems of functions, we have

BC = CB = I.
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The relation to H and A: H = CtC A = BBt

sm+n = 〈xm, xn〉L2(µ) = c0,mc0,n + c1,mc1,n + . . .+ cm,mcm,n, m ≤ n

so H = CtC.
Inserting Pn(x) = bn,nx

n + bn−1,nx
n−1 + . . .+ b1,nx + b0,n in

K (x , y) =
∞∑
n=0

Pn(x)Pn(y) =
∞∑

j ,l=0

aj ,lx
jy l

K (x , y) =
∞∑
n=0

 n∑
j=0

bj ,nx
j

( n∑
l=0

bl ,ny
l

)
hence (formally)

aj ,l =
∞∑

n=max(j ,l)

bj ,nbl ,n, A = BBt .

Rigorously: B is Hilbert-Schmidt, hence A is trace class.
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The order of certain indeterminate moment problems

Consider a symmetric indeterminate moment problem given by

bn > 0 and an = 0 for all n.

De�nition (bn) is called regular if it is either eventually log-convex,

i.e., there exists n0 ∈ N such that

b2n ≤ bn−1bn+1, n ≥ n0, (3)

or eventually log-concave, i.e., the reverse inequality holds.

Theorem (B and Szwarc, Adv. Math. 2014)

Let (bn) be a regular sequence of positive numbers. Then the

corresponding symmetric moment problem is indeterminate if and

only if
∑

1/bn <∞. In the indeterminate case the order ρ of the

moment problem is equal to the exponent of convergence of (bn)

E(bn) = inf

{
α > 0 |

∞∑
n=0

1

bαn
<∞

}
.
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Work in progress with Szwarc, Wrocªaw

Theorem

Assume that (bn) is eventually log-convex and strictly increasing.

The corresponding moment problem is indeterminate of order 0.

The matrix product AH is absolutely convergent and AH = I.

Examples: bn = exp(anb), with a > 0, b ≥ 1.

Theorem

Assume that bn = (n + 1)c , c > 0. Then bn is log-concave and the

symmetric moment problem is indeterminate if and only if c > 1.

The order is 1/c.
The product AH is absolutely convergent for c > 3/2 with

AH = I.
There exists a symmetric moment problem of order 2/3 such that

AH is not absolutely convergent.
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Ideas of proof I

We study two quantities:

Un :=
s2n

b20b
2
1 . . . b

2
n−1

, Vn = b0b1 . . . bn−1cn,

where we recall that

cn =
√
an,n =

 ∞∑
j=n

b2n,j

1/2

.

Both quantities are scale invariant: If (bn) is replaced by (λbn) for

some λ > 0, then Un,Vn are unchanged.
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Ideas of proof II

In the symmetric case the odd moments vanish and

s2n = (J2ne0, e0), say

s0 = 1, s2 = b20, s4 = b20(b20+b21), s6 = (b0b1b2)2+b20b
4
1+2b40b

2
1+b60

but these polynomials in b0, b1, . . . are di�cult to control.

We write

xn

b0b1 . . . bn−1
=

[n/2]∑
k=0

un,kPn−2k(x)

hence by Parseval

Un =

[n/2]∑
k=0

u2n,k .

Note that un,0 = 1 and

un+1,k =
bn−2k
bn

un,k +
bn+1−2k

bn
un,k−1, 1 ≤ k ≤ [n/2].
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Ideas of proof III

One can get estimates of un,k and then Un via this recurrence.

Note that in the log-convex case bn−1/bn is decreasing, while in the

log-concave case it is increasing, and this permits estimates.

Example:

Theorem

Assume (bn) is log-convex and strictly increasing. De�ne

q = b0/b1 < 1. Then

Un ≤ (q2; q2)−2∞

∞∑
k=0

q2k
2

.

Here we have used the notation from the theory of basic

hypergeometric functions: For z ∈ C, 0 < q < 1 we write

(z ; q)n =
n−1∏
j=0

(
1− zqj

)
, n = 1, 2, . . . ,∞, (z ; q)0 = 1.
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An illustration

We shall prove that for all n = 0, 1, 2, . . .

In :=

∫ ∞
0

xn exp

(
− (log x)2

2 log(1/q)

)
sin(

2π

log(1/q)
log x) dx = 0.

Substitution u = log x and writing c := log(1/q) > 0

In :=

∫ ∞
−∞

exp(u(n + 1)) exp

(
−u2

2c

)
sin(

2π

c
u) du.

Using

(u − (n + 1)c)2

2c
=

u2

2c
− (n + 1)u +

c

2
(n + 1)2

and translation invariance of the integral we get

In = exp((c/2)(n+1)2)

∫ ∞
−∞

exp(−u2

2c
) sin

(
2π

c
(u + (n + 1)c)

)
du = 0.
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Moments of the discrete distribution

We shall prove that

sn =
1

L(a)

∞∑
k=−∞

(aqk)nakqk(k+2)/2 = q−n(n+2)/2

where

L(a) = s0 =
∞∑

k=−∞
akqk(k+2)/2.

Write

qk
2/2+kn = q(k+n)2/2−n2/2

to get

sn =
q−n

2/2

L(a)

∞∑
k=−∞

ak+nqkq(k+n)2/2 = q−n−n
2/2

using translation invariance of the sum.
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