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I. Hankel Operators on the Hardy space H”

Hankel: a bounded linear operator I': H* — H~,

H* = {f: f= Zf Hglf )IF = IIfIIF < oo}

having a matrix

r— Co Cz Cy Cn ... ...
Ca €3 Cn Cg ... ...
-
with respect to the standard basis (z")>°, or equivalently

['s = S*I,
where Sf = zf(z) stands for the shift operator on H-.



e Notation I' = T, if ¢, = f(k), k > 0 (Fourier coefficients of
f € L*(r))
¢ Nehari’s theorem: I' is bounded on H* < T' = T, with
f € L>(r) and

I0l = min{llfle: D= Tj feLx@b= [ flm}

where H* = {f: fe L>*(), f(k)= 0 for k> 0}.

e Yet another useful model for Hankel operators: H = JI :
H? — H?, where H2 = [* & H?> = {f: f e L), f(k) =0
for k >0} and Jf = zf(z) (2 € 1), f € L*(1); J is a unitary
symmetry on 2, 7z = 27" (kez), J° = 1.

e Nehari’s theorem: a Hankel H : H° — H? is bounded
& dg e L™(1) s.t.

Hx = H,r = P_(gx) (x € H*), P- is the orthoprojection on H-.

e In fElCt.‘. ||H"!|| — ||g”;l."x;f”:~{ and jl} — HJ’F_;'.



Condition Numbers

e Condition number of a linear operator CN(A) = | A|-]|A7Y

e Important everywhere where the size of inverses ||A™!|| or
the resolvents |[(A] — A)!|| matters:

for (effective) similarity V1AV, OCN(V) < ..

- for functional calculi f(A) = ﬁu (AT — Ay LA N)dA;

for computational linear algebra and n x n matrices A:

- as the maximal relative errors for perturbed equations:
Alr + Az) = y+ Ay,

LSy
2 Ay iyl
i—1

- as a measure for the linear independence of columns (Ae; )}'";:

CN(A) = max

TAT = F?I-'E:TL{HJJIHZLH - rank(B) < n}.



e Condition number C'N(I') has no sense for a Hankel I' (al-
ways 0 € a([)).
But [' can be invertible if we disregard the kernel Kerl.

e Inverses disregarding the kernels are called Moore-Penrose
inverses: A and B are (mutually) Penrose inverse to each
other if BAB = B, ABA = A (and AB, BA selfadjoint). It
is to say, AB = [ on the Range(A), BA= I on the range B,

complemented by (0 on complements.

¢ Fact: The restriction I'|/(Kerl')- can be invertible, and
moreover |['| |[(Kerl')" is an arbitrary positive operator, up

to unitary equivalence (S.Treil, 1990/1991).

¢ Moreover, KerH; = Kerl'y; # {0} < there exist ¢ € H™
and a Beurling inner function © (© € H*™ and |©|= 1 a.e. on

r) such that KerH; = ©H*, and H; = Hg,.



e Let H: H* — H? be a Hankel having a kernel,
KerH = ©H?, © inner, H = Hg,, v € HY,

and let Kg = (KerH)- = H?© ©H? the so-called "model
space” and Mg : Ky — Kg the model operator,

Mgx = Fglzz), T € Kg,
Pg stands for the orthogonal projection on Ag.

e D.Clark, 1972: ©Hg, = @(Mo)Fs, and hence (Hg, is Pen-
rose invertible) < (Range(Hg ) closed) < ¢(Mg) invertible <
A Bezout equation ph+ ©g = 1 is solvable in i, g € H™, and
moreover

IHS | = llo(Mo) || = min| k]

the inf (min) is taken over all these solutions.



¢ Comments: The quantity inf|h|., wh+ ©g = 1, could be
estimated in terms of inf.c.(|po(2)]° + |©(z)|*), but usually the
latter it is not available...

The available quantity is

o, = inf{lp(z)]: z € o(Mo)} (if ¢ € H*nC(p)),
or even only 6, = inf{|p(A\)]: |A| < 1, O(A) = 0}.

e The set {\: |\ < 1, O(\) = 0} = o,(Meg) is the point spec-
trum of Mg, the reproducing kernels k)(z) = L_—lT}'—* O(A) = 0,
are still eigenvectors of p(Mg)™:

(M) ky = @(A)ky, O(A) = 0.

¢ The problem is whether there exists a function ¢t — ¢(t),
t > 0 such that

Hg Y= leMe)™ | < ed,), Yo € H® ?



e Given an inner function © we define c(d) =

= SHP{IIH U= lle(Mo) M| = 8 < 8, =infoelel < el < 13,

where 0 <d <1, 0(0O)= o(Mg)= {z: |z| < 1. lim,..|O(({)| =
0} and ¢ € H> ﬂC‘ (5) (the disc algebra).

¢ Comments: (1) Normalization |||, < | is necessary to
have an estimate for condition numbers CN(Hg ) = CN{p(Mag)).

(2) In fact, the estimate given by ¢(d) can be written directly
in C'N-terms, as follows

x5 S ONHs,) = CN(p(Me) < el

(sharp estimates) where A(p) = r(@(Mo) 1) ||e(Mg)|| is a ?SPEC-
TRAL CONDITION NUMBER” (the norm ||p(Mg) || is replaced
by the spectral radius r(p(Mg)™')).

(3) The problem is to decide whether ¢(d) < oo for all (cer-
tain) 0 < 6 < 1.



¢ More notation:

e The pseudohyperbolic distance between z,w € o is p(z,w) =
=
e An inner function © can be factored into © = BS where

b.(w)|, where b.(w) = stands for a Blaschke factor.

B = Mj=1b), and S = exp(— . “Zdv(C))

"{—=z

are, respectively, a Blaschke product over the zeroes Z(0) =
(Ar)i=1 of © in the disc p and a singular inner function, v = 0
being a singular Borel measure on .

e A Borel measure i > () on the disc o is said to be a " Carleson

measure” if H* C L*(u); p is Carleson if and only if

|-_-I

1=z
SUP - op jj_h | — E{:‘|_:

dp(() < oo

(the Reproducing Kernel Test).
e A measure associated with a Blaschke product B is defined
as g = Tp=1(1— [A[F)dy,.



e THEOREM 1 (P.Gorkin, R.Mortini, N.N. -2008). Given an inner

function ©, with the above notation, the following properties
are equivalent.

(1) ¥4, 0<d <1l = cld) < oc.

(2) If p € H* and 6, = infop=o|p(A)] > 0 then p(Mg) is
invertible (Hg_ Penrose invertible).

(3) © = BS, and Ve > 0 dip > 0 s.t. {|S| <n} C {|B| <e¢} and

up is a "Weak Carleson measure”: e > ()

1 — |wl|?
|l o | !{;!|Ed1‘u”[§) < 0C.

(4) Ve = 0 nle) = inf{|Ow)|: plw, Z(6))=> €} > 0

SUP o(w Z(6)) = f

Moreover, c(d) < Wiﬂg o73) for every 0, 0 <6 <1 (a >0
is a numerical constant), and so

IHS | = [lo(Mo) || < e(8,) (Vo € H*, |lpllx < 1),



e Comments: (a) If o(Mg) is in a Stolz angle then (3) & (3’)
© = BS, S= 1and ug is a Carleson measure (not only ”weak
Carleson”).

(b) In the latter case (3’), Z(B) = (Ay);>1 is a finite union of
interpolating sequences (say, N) and

clo) < h—_ffﬂgh, 0<d<1.

(c) In general, 0 — ¢(d) is a non-increasing function on (0, 1)
which can be infinite for some 0, 0 € (0,0(®)), and finite for
) € (0(©),1). For every 0, € |0, 1] there exists © = B such that
0(B) = 0, (Vasyunin + N., 2011).

(d) Even if 6(0) = 0, c(0) can grow arbitrarily fast as 0 | 0
(Borichev, 2013).

(e) In fact, 6(©) = inf{e > 0: nle) > 0} (Borichev-Nicolau-
Thomas, 2017).



I1. Cripto-Hankel Integral Operators

e "(Almost) every operator is Hankel”
Below A: H — H is a bounded Hilbert space operator.

¢ Every non-negative operator A > 0 having 0 € 7,...(A) and
dimKerA € {0,0c} is the modulus |[I'| of a Hankel I' with
respect to an orthonormal basis (S.Treil, 1990).

e Every A with 0 € 0,...(A) and dimKerA € {0,00}, being mul-
tiplied by a unitary operator, has a Hankel matrix [' with
respect to an orthonormal basis (is a ”cripto-hankel opera-
tor™).

In particular, CN(A)= CN(I').

e Every selfadjoint operator with simple spectrum has a
Hankel matrix with respect to an orthonormal basis

(A.Megretsky- V.Peller- S.Treil, 1995).



An example: lower triangular integral operators

e Let g be Borel probability measure on [0,1] and J, an integration
operator

j;ff{j-:jl — -'I.[[]___r:a fdl,[.t 0 E £ E J—

on the spaces LP([0, 1], p).
e [0,z > can be [0, z) or [0, z], or - which 1s better for a symmetry reason
between J, and J7 - an arithmetic mean of these two:

Juflz) = Joz= fdu = Jjoo fdp+ %ﬁ-({if}j'f(iﬂ): x € [0,1].

e We use the standard decomposition of g, p = p.+ g 10 the discrete
Hd = Zyeln,1] ,u({y}:lﬁﬂ and the continuons components. If gy = 0. then

Juflx) = I fdp.



o J, LP(u) — LP(p). 1 < p < oo, is a compact operator whose
spectrim

o(J, 2 LP(p) — L7 (u))

does not depend on p and consists of {0} and the eigenvalues éﬁa({y})
y € [0,1].

e Consider the algebra of lower triangular integral operators
generated by J,,

App = algrry(Jy).

the norm closure of polynomials i J, : L*(p) — LP(p), 1 < p < oo,
JU = ad.

¢ We will bounding condition numbers of operators in A, ,
in terms of the spectral condition numbers.

The question is treated as the well/ill-posedness of the
inversion problem in A,,, in the following sense.



e The problem (as before) is to find a bound CN(S) < ¢(1/A(S))
in terms of the spectral condition number A(S) = r(S™1)||5],
Se A,
e Define

ds = min(|A| : A€ o(S5)), where S € A, .

o) = sup{||[S7!|: 6< ds< ||IS]| <1, SeA, L 0<d<],
0(A,,) = inf{d e (0,1]: ¢(d) < oo}

(a "eritical constant™ c(d) = oo for 0 < & < 0(A, ). and c(d) < oo
for o(A, ) <o <1).
¢ Comment: this is a kind of the well/ill-posedness of the

inversion problem for polynomials in J, ,:

- well-posed if 6(A,,) = 0, and
- ill-posed if 6(A, ,) = 0 (... there exists an "invisible” but numerieally

detectable spectrum).



e Today, I can manage the problem for two following cases only:
-p= 1oroo AND p = p. (continuous measure).

- p= 2, u arbitrary.

e We say that a sequence of positive numbers (a,),>1 geometrically
decrease 1t Sup,,;jl%rt—' < 1.

e Theorem 1. For the case p= 1. pu = .. we have

d(A)=1/2, and c(d) = = for 1/2 < § < 1.

2n—1

e Theorem 2. For the case p= 2, the following alternative holds.

(1) Either, pp. = 0 and a(J,) is a (finite) union of N geometrically

decreasing sequences, and then
1
_ log— _
d(A,2) = 0and c(d) < ELF:*E, 0<a <1,
where a > 0 depends on N and ratios of geometric sequences in o(J,).

(2) Or, this is not the case, and then 6(A,») = 1 (so that, c(d) = oo
for every 0 < & < 1).



e Hints to the proof of Theorem 2:
1) The operator J, : L*(u) — L*(p) has a nonnegative real part:

‘I:r — .LZ:F__].] fdnu ERE["}-jfjf — _/[1[]_.]_] fdﬁ — [f" 1)11'.-2[;.’}]'! f E LE(JELj

and rank(Re(J,)) = 1.
Consequently. 1ts Cayley transform €, 1s a contraction.

C,=(I—J)I+J,)"|C.] < 1
having rank 1 defects, rank(l — CC,) = rank(l — C,C]) = 1.

2) alg(J,) = alg(C,). o(C,) = wlo(J,)) C [0,1] where w(z) =

¥

(1—2z)(1+2)"1.

3) C, is unitarily equivalent to its functional model Mg : Ko —
Kg where © = 6, stands for the characteristic function of C,.



e Hints to the proof of Theorem 2 (cont’d/end):

4) Computing the characteristic function,

¥

0,(2) = ((I+ i\2Re(J,)(J} — 21)""\[2Re(J,))1, 1) gz lIL1] .

14z

ﬁ,uli:] — kl‘_ll big(’gj ' EIP(_.IH'{'([U! l]]l o n_,jl'
| A{ze)
where A, = i {i 7] are eigenvalues of C,, by (2) = %Hfz an ele-
1+
2

mentary Blaschke factor.

5) Applying the above GMN theorem we get the result.
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The End

Xk 3k %k

Thank you!



