Hankel Moore-Penrose Condition Numbers

Nikolai Nikolski

Institute of Mathematics, Bordeaux and Chebyshev Laboratory, St.Petersburg

I. Hankel Operators on the Hardy space H^2

Hankel: a bounded linear operator $\Gamma: H^2 \longrightarrow H^2$,

$$H^2 = \ \{f: \ f = \ \sum\limits_{k \geq 0} \hat{f}(k) z^k, \ \sum\limits_{k \geq 0} |\hat{f}(k)|^2 = \ \|f\|^2 < \ \infty \}$$

having a matrix

$$\Gamma = \begin{pmatrix} c_0 & c_1 & c_2 & c_3 & \dots & \dots \\ c_1 & c_2 & c_3 & c_4 & \dots & \dots \\ c_2 & c_3 & c_4 & c_5 & \dots & \dots \\ c_3 & c_4 & c_5 & c_6 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}.$$

with respect to the standard basis $(z^k)_0^{\infty}$, or equivalently $\Gamma S = S^*\Gamma$,

where Sf = zf(z) stands for the shift operator on H^2 .

- Notation Γ = Γ_f if c_k = f̂(k), k ≥ 0 (Fourier coefficients of f ∈ L²(τ))
 Nehari's theorem: Γ is bounded on H² ⇔ Γ = Γ_f with
- Nehari's theorem: Γ is bounded on $H^2 \Leftrightarrow \Gamma = \Gamma_f$ with $f \in L^{\infty}(T)$ and $\|\Gamma\| = \min\{\|f\|_{\infty}: \Gamma = \Gamma_f, f \in L^{\infty}(T)\} = \|f\|_{L^{\infty}/H^{\infty}_{-}}\}$

where $H_{-}^{\infty} = \{ f : f \in L^{\infty}(\mathbb{T}), \ \hat{f}(k) = 0 \ for \ k \geq 0 \}.$

- Yet another useful model for Hankel operators: $H = \mathcal{J}\Gamma$: $H^2 \longrightarrow H^2_-$, where $H^2_- = L^2 \ominus H^2 = \{f : f \in L^2(\mathbb{T}), \hat{f}(k) = 0\}$ for $k \geq 0\}$ and $\mathcal{J}f = \overline{z}f(\overline{z})$ ($z \in \mathbb{T}$), $f \in L^2(\mathbb{T})$; \mathcal{J} is a unitary
- symmetry on L^2 , $\mathcal{J}z^k = z^{-k-1}$ $(k \in \mathbb{Z})$, $\mathcal{J}^2 = I$.

 Nehari's theorem: a Hankel $H: H^2 \longrightarrow H_-^2$ is bounded

 \bullet Nenari's theorem: a Hankel $H: H^z \longrightarrow H^z_-$ is bounded $\Leftrightarrow \exists g \in L^\infty(\mathbb{T}) \text{ s.t.}$

 $Hx = H_gx =: P_-(gx)$ $(x \in H^2), P_-$ is the orthoprojection on H^2_- .

• In fact, $||H_g|| = ||g||_{L^{\infty}/H^{\infty}}$ and $\mathcal{J}\Gamma_f = |H_{\mathcal{J}f}|$.

Condition Numbers

- Condition number of a linear operator $CN(A) = ||A|| \cdot ||A^{-1}||$
- Important everywhere where the size of inverses $||A^{-1}||$ or the resolvents $||(\lambda I A)^{-1}||$ matters:
- for (effective) similarity $V^{-1}AV$, $CN(V) \leq ...$;
- for functional calculi $f(A) = \frac{1}{2\pi i} \int_{\gamma} (\lambda I A)^{-1} f(\lambda) d\lambda$;
- for computational linear algebra and $n \times n$ matrices A:
- as the maximal relative errors for perturbed equations: $A(x + \Delta x) = y + \Delta y$,

$$CN(A) = \max_{x, \Delta y} \frac{\|\Delta x\|/\|x\|}{\|\Delta y\|/\|y\|},$$

- as a measure for the linear independence of columns $(Ae_k)_{k=0}^{n-1}$:

$$\frac{1}{CN(A)} = min\{\frac{\|A - B\|}{\|A\|} : rank(B) < n\}.$$

• Condition number $CN(\Gamma)$ has no sense for a Hankel Γ (always $0 \in \sigma(\Gamma)$).

But Γ can be invertible if we disregard the kernel $Ker\Gamma$.

- Inverses disregarding the kernels are called Moore-Penrose inverses: A and B are (mutually) Penrose inverse to each other if BAB = B, ABA = A (and AB, BA selfadjoint). It is to say, AB = I on the Range(A), BA = I on the range B, complemented by 0 on complements.
- Fact: The restriction $\Gamma|(Ker\Gamma)^{\perp}$ can be invertible, and moreover $|\Gamma| |(Ker\Gamma)^{\perp}$ is an arbitrary positive operator, up to unitary equivalence (S.Treil, 1990/1991).
- Moreover, $KerH_f = Ker\Gamma_{\mathcal{J}f} \neq \{0\} \Leftrightarrow \text{there exist } \varphi \in H^{\infty}$ and a Beurling inner function $\Theta \ (\Theta \in H^{\infty} \text{ and } |\Theta| = 1 \ a.e.$ on \mathfrak{T}) such that $KerH_f = \Theta H^2$, and $H_f = H_{\overline{\Theta}\varphi}$.

• Let $H: H^2 \longrightarrow H^2$ be a Hankel having a kernel,

$$Ker H = \Theta H^2$$
, Θ inner, $H = H_{\overline{\Theta}\varphi}$, $\varphi \in H^{\infty}$,

and let $K_{\Theta} = (KerH)^{\perp} = H^2 \ominus \Theta H^2$ the so-called "model space" and $M_{\Theta} : K_{\theta} \longrightarrow K_{\Theta}$ the model operator, $M_{\Theta}x = P_{\Theta}(zx), \ x \in K_{\Theta},$

 P_{Θ} stands for the orthogonal projection on K_{Θ} .

• D.Clark, 1972: $\Theta H_{\overline{\Theta}\varphi} = \varphi(M_{\Theta})P_{\Theta}$, and hence $(H_{\overline{\Theta}\varphi} \text{ is Penrose invertible}) \Leftrightarrow (Range(H_{\overline{\Theta}\varphi}) \text{ closed}) \Leftrightarrow \varphi(M_{\Theta}) \text{ invertible} \Leftrightarrow$ A Bezout equation $\varphi h + \Theta g = 1$ is solvable in $h, g \in H^{\infty}$, and moreover

$$||H_{\overline{\Theta}\varphi}^{(-1)}|| = ||\varphi(M_{\Theta})^{-1}|| = min||h||_{\infty},$$

the inf (min) is taken over all these solutions.

• Comments: The quantity $\inf \|h\|_{\infty}$, $\varphi h + \Theta g = 1$, could be estimated in terms of $\inf f_{z \in \mathbb{D}}(|\varphi(z)|^2 + |\Theta(z)|^2)$, but usually the latter it is not available...

The available quantity is

$$\delta_{\varphi} =: \inf\{|\varphi(z)|: z \in \sigma(M_{\Theta})\} \text{ (if } \varphi \in H^{\infty} \cap C(\overline{\mathbb{D}})\text{),}$$

or even only $\delta_{\varphi} = \inf\{|\varphi(\lambda)| : |\lambda| < 1, \ \Theta(\lambda) = 0\}.$

• The set $\{\lambda : |\lambda| < 1, \, \Theta(\lambda) = 0\} = \sigma_p(M_{\Theta})$ is the point spectrum of M_{Θ} , the reproducing kernels $k_{\lambda}(z) = \frac{1}{1-\overline{\lambda}z}, \, \Theta(\lambda) = 0$, are still eigenvectors of $\varphi(M_{\Theta})^*$:

$$\varphi(M_{\Theta})^*k_{\lambda} = \overline{\varphi(\lambda)}k_{\lambda}, \, \Theta(\lambda) = 0.$$

• The problem is whether there exists a function $t \mapsto c(t)$, t > 0 such that

$$||H_{\overline{\Theta}\varphi}^{(-1)}|| = ||\varphi(M_{\Theta})^{-1}|| \le c(\delta_{\varphi}), \forall \varphi \in H^{\infty}$$
?

• Given an inner function Θ we define $c(\delta) =$

$$= \sup\{\|H_{\overline{\Theta}\varphi}^{(-1)}\| = \|\varphi(M_{\Theta})^{-1}\|: \delta \leq \delta_{\varphi} = \inf_{\sigma(\Theta)}|\varphi| \leq \|\varphi\|_{\infty} \leq 1\},$$

where $0 < \delta < 1$, $\sigma(\Theta) = \sigma(M_{\Theta}) = \{z : |z| \le 1, \underline{lim_{\zeta \longrightarrow z}} |\Theta(\zeta)| = 0\}$ and $\varphi \in H^{\infty} \cap C(\overline{\mathbb{D}})$ (the disc algebra).

- Comments: (1) Normalization $\|\varphi\|_{\infty} \leq 1$ is necessary to have an estimate for condition numbers $CN(H_{\overline{\Theta}\varphi}) = CN(\varphi(M_{\Theta}))$.
- (2) In fact, the estimate given by $c(\delta)$ can be written directly in CN-terms, as follows

$$\frac{1}{\Delta(\varphi)} \leq CN(H_{\overline{\Theta}\varphi}) = CN(\varphi(M_{\Theta})) \leq c(\frac{1}{\Delta(\varphi)}),$$

(sharp estimates) where $\Delta(\varphi) = r(\varphi(M_{\Theta})^{-1}) \|\varphi(M_{\Theta})\|$ is a "SPEC-TRAL CONDITION NUMBER" (the norm $\|\varphi(M_{\Theta})^{-1}\|$ is replaced by the spectral radius $r(\varphi(M_{\Theta})^{-1})$).

(3) The problem is to decide whether $c(\delta) < \infty$ for all (certain) $0 < \delta < 1$.

- More notation:
- The pseudohyperbolic distance between $z, w \in \mathbb{D}$ is $\rho(z, w) = |b_z(w)|$, where $b_z(w) = \frac{z-w}{1-\overline{z}w}$ stands for a Blaschke factor.
- An inner function Θ can be factored into $\Theta = BS$ where

$$B = \prod_{k \geq 1} b_{\lambda_k}$$
 and $S = exp(-\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d\nu(\zeta))$

are, respectively, a Blaschke product over the zeroes $Z(\Theta) = (\lambda_k)_{k\geq 1}$ of Θ in the disc \mathbb{D} and a singular inner function, $\nu \geq 0$ being a singular Borel measure on \mathbb{T} .

• A Borel measure $\mu \geq 0$ on the disc \mathbb{D} is said to be a "Carleson measure" if $H^2 \subset L^2(\mu)$; μ is Carleson if and only if

$$\sup_{z\in\mathbb{D}} \int_{\mathbb{D}} \frac{1-|z|^2}{|1-\overline{z}\zeta|^2} d\mu(\zeta) < \infty$$

(the Reproducing Kernel Test).

• A measure associated with a Blaschke product B is defined as $\mu_B = \sum_{k\geq 1} (1-|\lambda_k|^2) \delta_{\lambda_k}$.

- THEOREM 1 (P.Gorkin, R.Mortini, N.N. -2008). Given an inner function Θ , with the above notation, the following properties are equivalent.
- (1) $\forall \delta$, $0 < \delta < 1 \implies c(\delta) < \infty$.
- (2) If $\varphi \in H^{\infty}$ and $\delta_{\varphi} = inf_{\Theta(\lambda)=0}|\varphi(\lambda)| > 0$ then $\varphi(M_{\Theta})$ is invertible $(H_{\overline{\Theta}\varphi}$ Penrose invertible).
- (3) $\Theta = BS$, and $\forall \epsilon > 0 \exists \eta > 0 \text{ s.t. } \{|S| \leq \eta\} \subset \{|B| \leq \epsilon\} \text{ and } \mu_B \text{ is a "Weak Carleson measure": } \forall \epsilon > 0$

$$sup_{\rho(w,Z(\Theta))\geq\epsilon}\int_{\mathbb{D}}\frac{1-|w|^2}{|1-\overline{w}\zeta|^2}d\mu_B(\zeta)<\infty.$$

(4) $\forall \epsilon > 0 \ \eta(\epsilon) =: \inf\{|\Theta(w)| : \rho(w, Z(\Theta)) \ge \epsilon\} > 0$.

Moreover, $c(\delta) \leq \frac{a}{\eta(\delta/3)^2} log \frac{1}{\eta(\delta/3)}$ for every δ , $0 < \delta < 1$ (a > 0 is a numerical constant), and so

$$||H_{\overline{\Theta}_{\varphi}}^{(-1)}|| = ||\varphi(M_{\Theta})^{-1}|| \le c(\delta_{\varphi}) \ (\forall \varphi \in H^{\infty}, \ ||\varphi||_{\infty} \le 1).$$

- Comments: (a) If $\sigma(M_{\Theta})$ is in a Stolz angle then (3) \Leftrightarrow (3') $\Theta = BS$, S = 1 and μ_B is a Carleson measure (not only "weak Carleson").
- (b) In the latter case (3'), $Z(B) = (\lambda_k)_{k \ge 1}$ is a finite union of interpolating sequences (say, N) and

$$c(\delta) \leq \frac{a}{\delta^{2N}} log \frac{e}{\delta}, \ 0 < \delta < 1.$$

- (c) In general, $\delta \longmapsto c(\delta)$ is a non-increasing function on (0,1) which can be infinite for some δ , $\delta \in (0,\delta(\Theta))$, and finite for $\delta \in (\delta(\Theta),1)$. For every $\delta_1 \in [0,1]$ there exists $\Theta = B$ such that $\delta(B) = \delta_1$ (Vasyunin + N., 2011).
- (d) Even if $\delta(\Theta) = 0$, $c(\delta)$ can grow arbitrarily fast as $\delta \downarrow 0$ (Borichev, 2013).
- (e) In fact, $\delta(\Theta) = \inf\{\epsilon > 0 : \eta(\epsilon) > 0\}$ (Borichev-Nicolau-Thomas, 2017).

II. Cripto-Hankel Integral Operators

• "(Almost) every operator is Hankel"

Below $A: H \longrightarrow H$ is a bounded Hilbert space operator.

- Every non-negative operator $A \geq 0$ having $0 \in \sigma_{ess}(A)$ and $dim Ker A \in \{0, \infty\}$ is the modulus $|\Gamma|$ of a Hankel Γ with respect to an orthonormal basis (S.Treil, 1990).
- Every A with $0 \in \sigma_{ess}(A)$ and $dimKerA \in \{0, \infty\}$, being multiplied by a unitary operator, has a Hankel matrix Γ with respect to an orthonormal basis (is a "cripto-hankel operator").

In particular, $CN(A) = CN(\Gamma)$.

• Every selfadjoint operator with simple spectrum has a Hankel matrix with respect to an orthonormal basis (A.Megretsky- V.Peller- S.Treil, 1995).

An example: lower triangular integral operators

• Let μ be Borel probability measure on [0,1] and J_{μ} an integration operator

$$J_{\mu}f(x) = \int_{[0,x>} f d\mu, \ 0 \le x \le 1,$$

on the spaces $L^p([0,1],\mu)$.

• [0, x > can be [0, x) or [0, x], or - which is better for a symmetry reason between J_{μ} and J_{μ}^* - an arithmetic mean of these two:

$$J_{\mu}f(x) = \int_{[0,x)} f d\mu = \int_{[0,x)} f d\mu + \frac{1}{2}\mu(\{x\})f(x), x \in [0,1].$$

• We use the standard decomposition of μ , $\mu = \mu_c + \mu_d$, in the discrete $\mu_d = \sum_{y \in [0,1]} \mu(\{y\}) \delta_y$ and the continuous components. If $\mu_d = 0$, then

$$J_{\mu}f(x) = \int_0^x f d\mu.$$

• $J_{\mu}: L^{p}(\mu) \longrightarrow L^{p}(\mu)$, $1 \leq p \leq \infty$, is a compact operator whose spectrum

$$\sigma(J_{\mu}: L^{p}(\mu) \longrightarrow L^{p}(\mu))$$

does not depend on p and consists of $\{0\}$ and the eigenvalues $\frac{1}{2}\mu(\{y\})$, $y \in [0, 1]$.

• Consider the algebra of lower triangular integral operators generated by J_{μ} ,

$$A_{\mu,p} = alg_{L^p(\mu)}(J_\mu),$$

the norm closure of polynomials in $J_{\mu}: L^{p}(\mu) \longrightarrow L^{p}(\mu)$, $1 \leq p \leq \infty$, $J_{\mu}^{0} =: id$.

• We will bounding condition numbers of operators in $A_{\mu,p}$ in terms of the spectral condition numbers.

The question is treated as the well/ill-posedness of the inversion problem in $A_{\mu,p}$, in the following sense.

- The problem (as before) is to find a bound $CN(S) \leq c(1/\Delta(S))$ in terms of the spectral condition number $\Delta(S) = r(S^{-1})||S||$, $S \in A_{\mu,p}$.
- Define

$$\delta_S = min(|\lambda| : \lambda \in \sigma(S)), \text{ where } S \in A_{\mu,p},$$

$$c(\delta) = \sup\{\|S^{-1}\| : \delta \le \delta_S \le \|S\| \le 1, S \in A_{\mu,p}\}, 0 < \delta \le 1,$$

$$\delta(A_{\mu,p}) = \inf\{\delta \in (0,1] : c(\delta) < \infty\},$$

(a "critical constant": $c(\delta) = \infty$ for $0 < \delta < \delta(A_{\mu,p})$, and $c(\delta) < \infty$ for $\delta(A_{\mu,p}) < \delta \le 1$).

- Comment: this is a kind of the well/ill-posedness of the inversion problem for polynomials in $J_{\mu,p}$:
- well-posed if $\delta(A_{\mu,p}) = 0$, and
- ill-posed if $\delta(A_{\mu,p}) > 0$ (... there exists an "invisible" but numerically detectable spectrum).

- Today, I can manage the problem for two following cases only:
- p = 1 or ∞ AND $\mu = \mu_c$ (continuous measure),
- p = 2, μ arbitrary.
- We say that a sequence of positive numbers $(a_n)_{n\geq 1}$ geometrically decrease if $\sup_{n\geq 1} \frac{a_{n+1}}{a_n} < 1$.
- Theorem 1. For the case p = 1, $\mu = \mu_c$, we have

$$\delta(A) = 1/2$$
, and $c(\delta) = \frac{1}{2\delta - 1}$ for $1/2 < \delta \le 1$.

- Theorem 2. For the case p = 2, the following alternative holds.
- (1) Either, $\mu_c = 0$ and $\sigma(J_{\mu})$ is a (finite) union of N geometrically decreasing sequences, and then

$$\delta(A_{\mu,2}) = 0 \text{ and } c(\delta) \leq a \frac{\log \frac{1}{\delta}}{\delta^{2N}}, \ 0 < \delta < 1,$$

where a > 0 depends on N and ratios of geometric sequences in $\sigma(J_{\mu})$.

(2) Or, this is not the case, and then $\delta(A_{\mu,2}) = 1$ (so that, $c(\delta) = \infty$ for every $0 < \delta < 1$).

- Hints to the proof of Theorem 2:
- 1) The operator $J_{\mu}: L^{2}(\mu) \longrightarrow L^{2}(\mu)$ has a nonnegative real part:

$$J_{\mu}^* = \ \int_{< x, 1]} f d\mu, \ 2 Re(J_{\mu}) f = \ \int_{[0, 1]} f d\mu = \ (f, 1)_{L^2(\mu)} 1, \ f \in L^2(\mu),$$

and $rank(Re(J_{\mu})) = 1$.

Consequently, its Cayley transform C_{μ} is a contraction,

$$C_{\mu} =: (I - J_{\mu})(I + J_{\mu})^{-1}, \|C_{\mu}\| \le 1,$$

- having rank 1 defects, $rank(I C_{\mu}^*C_{\mu}) = rank(I C_{\mu}C_{\mu}^*) = 1$.
- **2)** $alg(J_{\mu}) = alg(C_{\mu}), \ \sigma(C_{\mu}) = \omega(\sigma(J_{\mu})) \subset [0,1] \text{ where } \omega(z) = (1-z)(1+z)^{-1}.$
- 3) C_{μ} is unitarily equivalent to its functional model $M_{\Theta}: K_{\Theta} \longrightarrow K_{\Theta}$ where $\Theta = \theta_{\mu}$ stands for the characteristic function of C_{μ} .

- Hints to the proof of Theorem 2 (cont'd/end):
- 4) Computing the characteristic function,

$$\theta_{\mu}(z) = ((I + i\sqrt{2Re(J_{\mu})}(J_{\mu}^{*} - zI)^{-1}\sqrt{2Re(J_{\mu})})1, 1)_{L^{2}(\mu)}||1||^{-2},$$

$$\theta_{\mu}(z) = \prod_{k \geq 1} b_{\lambda_{k}}(z) \cdot exp(-\mu_{c}([0, 1])\frac{1+z}{1-z}),$$
where $\lambda_{k} = \frac{1 - \frac{\mu(\{x_{k}\})}{2}}{1 + \frac{\mu(\{x_{k}\})}{2}}$ are eigenvalues of C_{μ} , $b_{\lambda_{k}}(z) = \frac{\lambda_{k} - z}{1 - \lambda_{k} z}$ an elementary Blaschke factor.

5) Applying the above GMN theorem we get the result.

References

- N.Nikolski, NUMERICALLY DETECTABLE HIDDEN SPECTRUM OF CERTAIN INTEGRATION OPERATORS, Algebra and Analysis (St. Petersburg Math. J.), 28:6 (2016).
- P.Gorkin, R. Mortini, N. Nikolski, Norm controlled inversions and a corona theorem for H∞-quotient algebras, Journal of Functional Analysis 255 (2008) 854–876.

The End ***

Thank you!