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A Poncelet ellipse

What can this possibly have to do with Hankel
operators?



Hardy spaces
As usual H2(D) denotes the Hardy space of the unit
disc D, the functions

f (z) =
∞∑
n=0

anz
n

with

‖f ‖2 =
∞∑
n=0

|an|2 <∞.

It embeds isometrically as a subspace of L2(T), with
T the unit circle,

f (e it) ∼
∞∑
n=0

ane
int .



Orthogonal decomposition

Indeed we may write

L2(T) = H2 ⊕ (H2)⊥,

so that

∞∑
n=−∞

ane
int =

∞∑
n=0

ane
int +

−1∑
n=−∞

ane
int ,

and
f ∈ H2 ⇐⇒ zf ∈ (H2)⊥ = H2

0 .

Here, and often from now on, we write z = e it .



Toeplitz operators in brief
For g ∈ L∞(T) we define the Toeplitz operator Tg

on H2 by

Tg f = PH2(gf ) (f ∈ H2),

or multiplication followed by orthogonal projection.
It is well known that ‖Tg‖ = ‖g‖∞, and if g has
Fourier coefficients (cn), then Tg has the matrix

c0 c−1 c−2 · · ·
c1 c0 c−1

. . .

c2 c1 c0
. . .

...
...

... . . .

 .



Inner–outer factorizations

Recall that if f ∈ H2, not the 0 function, then it has
an inner–outer factorization (unique up to
unimodular constants)

f = θu

with θ inner, i.e., |θ(e it)| = 1 a.e., and with u outer
(no nontrivial inner divisors). Equivalently, u is
outer when

span (u, zu, z2u, . . .) = H2.



Model spaces

The factorization follows from Beurling’s theorem,
which says that the non-trivial closed invariant
subspaces for the shift S = Tz are the subspaces
θH2, with θ inner.

Now it follows that the invariant subspaces for the
backwards shift S∗ = Tz are the model spaces

Kθ = H2 	 θH2 = H2 ∩ θH2
0

with θ inner.

It is easy to check that Kθ = kerTθ.



Examples
(i) Take θ(z) = zn, and then

Kθ = span(1, z , z2, . . . , zn−1).

(ii) Take

θ(z) =
n∏

j=1

z − aj
1− ajz

,

a finite Blaschke product with distinct zeroes
a1, a2, . . . , an in D. Then

Kθ = span

(
1

1− a1z
, . . . ,

1

1− anz

)
.



The restricted shift

We write
Sθ = PKθ

S|Kθ
,

for the adjoint of the restriction of S∗ to its
invariant subspace Kθ.

More generally for suitable g ∈ L∞(T) the
truncated Toeplitz operator with symbol g is

Aθg = PKθ
Mg ,

where Mg is multiplication by g . So Sθ = Aθz .



Unitary perturbations

Suppose θ(0) = 0. Then D.N. Clark (1972)
parametrised the unitary rank-1 perturbations of Sθ
as {Uα : α ∈ T}, where

Uαf = Sθf + α〈f , S∗θ〉1 (f ∈ Kθ).

Alternatively for arbitrary θ we may look at unitary
Halmos 1-dilations on Kθ ⊕ C, which are

U =

(
Sθ ∗
∗ ∗

)
and in 1-1 correspondence with perturbations of Szθ.



Example
For θ(z) = zn, the operator Sθ has matrix

0 0 . . . 0 0
1 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

 ,

using the basis {1, z , z2, . . . , zn−1}, and the unitary
perturbations are

0 0 . . . 0 α
1 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

 ,

where |α| = 1.



Numerical ranges

Recall that for a Hilbert space operator we have

W (T ) = {〈Tx , x〉 : x ∈ H , ‖x‖ = 1},

a convex set (and closed if dimH <∞) with

σ(T ) ⊆ W (T ).

Part of this talk is devoted to understanding the
numerical range of Sθ.
Note that σ(Sθ) contains the zeroes of θ.



Other properties of the numerical range

Functional calculus property:

ReW (T ) ≤ c ⇐⇒ ‖ exp(tT )‖ ≤ exp(ct) (t ≥ 0).

Crouzeix conjecture:

‖f (T )‖ ≤ 2 sup{|f (z)| : z ∈ W (T )},

known to be true with a worse constant.

For f (z) = z the best constant is certainly 2.



Poncelet generalized

Numerical ranges of Sθ and Uα (quadrilaterals) for θ
a Blaschke of degree 3.



Theorems about numerical ranges

Gau and Wu (1998) for finite Blaschke products θ.

W (Sθ) =
⋂
α∈T

W (Uα),

an intersection of closed polygons.

Chalendar, Gorkin, JRP (2009). For all inner
functions θ

W (Sθ) =
⋂
α∈T

W (Uα).



Earlier and later work
Choi and Li (2001), the Halmos conjecture,

W (T ) =
⋂
U

W (U),

where U is a unitary dilation on H ⊕ H .

Benhida, Gorkin, Timotin (2011), and then
Bercovici and Timotin (2014). For completely
non-unitary contractions with defect indices n,

W (T ) =
⋂
U

W (U),

where U is a unitary dilation of T on H ⊕ Cn.



Those polygons
The vertices of the polygons are solutions to
zB(z) = λ for λ ∈ T. Also if

B(z)

zB(z)− λ
=

n+1∑
j=1

mj

z − zj
,

then each mj > 0 and the points of tangency are

mj+1zj + mjzj+1

mj + mj+1
(Gau and Wu (2004)).

Used by Chalendar–Gorkin–JRP–Ross (2016) to
decide when inner functions can be factorized under
composition.



Interpolation
The function zB(z) maps T to itself with an (n + 1)
to 1 cover.
How many polygons do we need to determine the
numerical range? Answer: 2.

If two Blaschkes θ and ϕ of degree n + 1 identify
two sets {z1, . . . , zn+1} and {w1, . . . ,wn+1} of the
circle (so that θ and ϕ are constant on both sets),
then they are Frostman shifts of each other,

ϕ = λ
θ − a

1− aθ
,

and if both vanish at 0 then they have the same
zeroes (Chalendar-Gorkin-JRP, 2011).



Infinitely-many zeroes

Numerical ranges of Sθ and Uα for θ an infinite
Blaschke product, zeroes accumulating at 1 and i .



From numerical ranges to norms

Lumer’s 1961 theorem asserts that

max{Reλ : λ ∈ W (T )} = lim
a→0+

1

a
{‖I + aT‖ − 1}.

Clearly, by replacing T by e itT , we may find the
numerical radius in different directions.

Thus we want to study ‖I + aSB‖ for a ∈ C, small.

There is another version, using exp(aSB), but this is
less useful here.



A link with Hankel operators

For an analytic truncated Toeplitz operator

Aθg = PKθ
Mg ,

with g ∈ H∞, we have

‖Aθg‖ = dist(θg ,H∞) = ‖Γθg‖

with Γf : H2 → H2
0 the Hankel operator

Γf u = P
H2

0
(fu).



Calculating the norm by interpolation

Best illustrated with θ a finite Blaschke product B .
A problem much studied by analysts and engineers.

The Nevanlinna-Pick approach goes by
interpolation. For ‖1 + aSB‖ ≤ γ precisely when we
can solve

1 + az = B(z)g(z) + γh(z)

with g , h ∈ H∞ and ‖h‖∞ ≤ γ.

Equivalently, h(zk) = 1 + azk , where z1, . . . , zn are
the zeroes of B .



The Pick matrix

Solution of the interpolation problem is possible if
and only if the matrix with (j , k) entry

1− (1 + azj)(1 + azk)/γ2

1− zjzk

is positive semi-definite.

This can be used to show that for real zeroes the
numerical radius of SB is attained on the real axis.



The Foias–Tannenbaum approach (1987)

Take |a| < 1 and for ρ > 0 let

Pρ = I − 1

4ρ2
(1 + aSB)(1 + aS∗B)

and the largest ρ for which Pρ is singular is the
norm of (I + aSB)/2.

Some ingenious calculations (theirs!) make this a
practical way of obtaining information on the
numerical radius.



A very easy example

B(z) = z
(
z−1/2
1−z/2

)
.

W (SB) an ellipse, foci 0 and 1/2, major axis [−1
4 ,

3
4].

Vertical tangents at zB(z) = ±1.

‖I + aSB‖ = 1 + 3
4a + o(a) for a > 0.



Norms of Truncated Toeplitz operators

More generally, we now look at the norm of the
TTO Aθg , where θ is inner and g ∈ L∞.

Theorem (Garcia and Ross) Suppose that θ is not a
finite Blaschke product, and ξ is a limit point of its
zeroes. If g is continuous on an open arc containing
ξ with |g(ξ)| = ‖g‖∞, then ‖Aθg‖ = ‖g‖∞.

Note that for g ∈ H∞, this is also giving us the
norm of the Hankel operator Γθg .



A more general result

The previous result becomes much simpler if one
uses Banach algebra ideas.

Let M(H∞) be the maximal ideal space of a Banach
algebra, and Z (θ) the zeroes of an inner function θ
in M(H∞).

Proposition (Gorkin–JRP, 2017). Suppose θ is
inner and not invertible in H∞ + C (T). For f ∈ L∞,

if f̂ (x) = ‖f ‖∞ for some x ∈ Z (u), then

dist(f , θH∞) = ‖f ‖∞.



Compact operators without continuous
symbols I

Theorem (Bessonov). Let θ be inner and
g ∈ H∞ + C (T).Then Aθg is compact if and only if
g ∈ θ(H∞ + C (T)).

Chalendar, Fricain and Timotin (in a survey article)
ask for an example of a compact TTO with symbol
in θ(H∞ + C (T)) that possesses no continuous
symbol.

We do this next.



Compact operators without continuous
symbols II

Example (Gorkin–JRP). Let B be an interpolating
Blaschke product with zero sequence (zn) clustering
at every point of T.

Let f ∈ H∞ + C (T) with f (zn)→ 0 but f (zn) 6= 0
for all n (for example, f could be another Blaschke
product with nearby zeroes).

Then AB
f is compact, but has no continuous symbol.



Truncated Hankel operators (THO)

For θ inner and a symbol g we may define the
truncated Hankel operator

Bθ
g : Kθ → zKθ, Bθ

g (f ) = PzKθ
(gf ).

Since zKθ = θKθ, we have in fact

Bθ
g (f ) = θAθθg(f ),

as observed by Bessonov.

Multiplication by θ is a unitary map from Kθ onto
zKθ, thus the results on norms and compactness of
TTO have natural analogues for THO.



The end

That’s all. Thank you.


