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A Poncelet ellipse

What can this possibly have to do with Hankel

operators?



Hardy spaces

As usual H?(ID) denotes the Hardy space of the unit
disc D, the functions

with
IF)* = Z |an|* < o0.

It embeds isometrlcally as a subspace of L?(T), with
T the unit circle,



Orthogonal decomposition

Indeed we may write
2(T) = H2 & (H)*,
so that
> e’ Zan " Z ane”,

and B L
feH < zf € (H*)' = H}.

Here, and often from now on, we write z = e'.



Toeplitz operators in brief

For g € L>(T) we define the Toeplitz operator T,
on H? by

Tof = Pre(gf) (f € Hz),

or multiplication followed by orthogonal projection.
It is well known that || T,|| = ||g]|~. and if g has
Fourier coefficients (c,), then T, has the matrix

Cg C.1 Co ---
Gt G C1
Q a &



Inner—outer factorizations

Recall that if f € H?, not the 0 function, then it has
an inner—outer factorization (unique up to
unimodular constants)

f=0u

with 6 inner, i.e., |#(e")| = 1 a.e., and with u outer
(no nontrivial inner divisors). Equivalently, u is
outer when

span (u, zu, z%u,...) = H>.



Model spaces

The factorization follows from Beurling's theorem,
which says that the non-trivial closed invariant
subspaces for the shift S = T, are the subspaces
OH? with 0 inner.

Now it follows that the invariant subspaces for the
backwards shift S* = T3 are the model spaces

Ky = H?> © 0H* = H* N GH2

with @ inner.

It is easy to check that Ky = ker T3.



Examples
(i) Take 6(z) = z", and then

Ky = span(l,z,2%,...,2" ).

(ii) Take

n
z—aj
0(z) = ]
j=1
a finite Blaschke product with distinct zeroes
ai, a,...,a,inD. Then

1 1
Ky = :
¢ = Spall (1—&)—127 71—5T,,z>




The restricted shift

We write
So = Pk, Sk,

for the adjoint of the restriction of S$* to its
invariant subspace Kj.

More generally for suitable g € L*°(T) the
truncated Toeplitz operator with symbol g is

Al = Py, Mg,

where M, is multiplication by g. So S = AY.



Unitary perturbations

Suppose 6(0) = 0. Then D.N. Clark (1972)
parametrised the unitary rank-1 perturbations of Sy
as {U, : a € T}, where

Usf = Sof +alf, SO (f € Ky).

Alternatively for arbitrary 6 we may look at unitary
Halmos 1-dilations on Ky & C, which are

U:<59 *)
k%

and in 1-1 correspondence with perturbations of S,4.



Example
For 6(z) = z", the operator Sy has matrix

0O 0 ... 0 O

1 0 ... 0 O

0O 0 ... 1 O
2

using the basis {1, z, z
perturbations are

,...,z" 1}, and the unitary

0 0 ... 0 «
1 0 ... 0 O
o 0 ... 1 O

where |a] = 1.



Numerical ranges

Recall that for a Hilbert space operator we have
W(T) = {(Tx,x) : x € H,|[x]| = 1},

a convex set (and closed if dim H < 00) with

o(T) C W(T).

Part of this talk is devoted to understanding the
numerical range of 5.
Note that o(Sy) contains the zeroes of 6.



Other properties of the numerical range

Functional calculus property:
ReW(T) <c <= | exp(tT)| <exp(ct) (t=>0).
Crouzeix conjecture:

IF(T)Il < 2sup{[f(z) : z € W(T)},

known to be true with a worse constant.

For f(z) = z the best constant is certainly 2.



Poncelet generalized

Numerical ranges of Sy and U, (quadrilaterals) for ¢
a Blaschke of degree 3.



Theorems about numerical ranges

Gau and Wu (1998) for finite Blaschke products 6.

W(Ss) = [ W(Ua),

a€cT
an intersection of closed polygons.

Chalendar, Gorkin, JRP (2009). For all inner
functions 6

W(Sp) = m W(U.).

a€eT



Earlier and later work

Choi and Li (2001), the Halmos conjecture,
w(T) = W(U),
U

where U is a unitary dilation on H & H.

Benhida, Gorkin, Timotin (2011), and then
Bercovici and Timotin (2014). For completely
non-unitary contractions with defect indices n,

w(T) = W(U),
v

where U is a unitary dilation of T on H ® C".



Those polygons

The vertices of the polygons are solutions to
zB(z) = X for A € T. Also if

B(z) Z m;
zB(z) — A z—z’

then each m; > 0 and the points of tangency are

mj12j + m;Zjq
m; + mj1

(Gau and Wu (2004)).

Used by Chalendar—Gorkin—JRP—Ross (2016) to
decide when inner functions can be factorized under
composition.



Interpolation

The function zB(z) maps T to itself with an (n+ 1)
to 1 cover.

How many polygons do we need to determine the
numerical range? Answer: 2.

If two Blaschkes 6 and ¢ of degree n+ 1 identify

two sets {z,...,z,11} and {w, ..., wyi1} of the
circle (so that 6 and ¢ are constant on both sets),
then they are Frostman shifts of each other,

0 — a
1—30’

©=A

and if both vanish at 0 then they have the same
zeroes (Chalendar-Gorkin-JRP, 2011).



Infinitely-many zeroes

A\
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Numerical ranges of Sy and U, for 8 an infinite
Blaschke product, zeroes accumulating at 1 and /.



From numerical ranges to norms

Lumer’s 1961 theorem asserts that

1
max{ReA: A€ W(T)} = Iir(r)w+5{||l +aT| —1}.
a—

Clearly, by replacing T by e T, we may find the
numerical radius in different directions.
Thus we want to study ||/ + aSg|| for a € C, small.

There is another version, using exp(aSg), but this is
less useful here.



A link with Hankel operators

For an analytic truncated Toeplitz operator
Al = Py, My,
with g € H*, we have
1Al = dist(fg, H) = [|Tg,]l
with ¢ : H> — H2 the Hankel operator

[fu= PHfg(fu).



Calculating the norm by interpolation

Best illustrated with 6 a finite Blaschke product B.
A problem much studied by analysts and engineers.

The Nevanlinna-Pick approach goes by
interpolation. For ||1 + aSg|| <« precisely when we
can solve

1+ 2z = B(2)g(2) + 7h(2)

with g, h € H* and ||h]|« < 7.

Equivalently, h(zx) = 1 + az, where z, ..., z, are
the zeroes of B.



The Pick matrix

Solution of the interpolation problem is possible if
and only if the matrix with (j, k) entry

1— (1+az)(1+43z%)/7°
1—ijk

is positive semi-definite.

This can be used to show that for real zeroes the
numerical radius of Sg is attained on the real axis.



The Foias—Tannenbaum approach (1987)

Take |a] < 1 and for p > 0 let
1 —=Cx*
P,=1-— 4—p2(1 + aSg)(1 + 3Sg)
and the largest p for which P, is singular is the

norm of (/ 4 aSg)/2.

Some ingenious calculations (theirs!) make this a
practical way of obtaining information on the
numerical radius.



A very easy example

AT,
% é% B(z) = z (£23).

W(Sg) an ellipse, foci 0 and 1/2, major axis [—3, 3].
Vertical tangents at zB(z) = +1.
|14 aSg|| = 1+ 2a+ o(a) for a > 0.

0



Norms of Truncated Toeplitz operators

More generally, we now look at the norm of the
TTO AZ,, where 0 is inner and g € L™.

Theorem (Garcia and Ross) Suppose that 6 is not a
finite Blaschke product, and £ is a limit point of its
zeroes. If g is continuous on an open arc containing

¢ with [g(&)| = llgllc. then [ AZll = llg ]l

Note that for g € H*, this is also giving us the
norm of the Hankel operator I_gg.



A more general result

The previous result becomes much simpler if one
uses Banach algebra ideas.

Let M(H*>) be the maximal ideal space of a Banach
algebra, and Z(0) the zeroes of an inner function 6
in M(H>).

Proposition (Gorkin—JRP, 2017). Suppose @ is
inner and not invertible in H* 4+ C(T). For f € L™,
if (x) = ||f]|o for some x € Z(u), then

dist(f, 0H®) = ||f]|c.



Compact operators without continuous
symbols |

Theorem (Bessonov). Let 6 be inner and
g € H* + C(T).Then AZ, is compact if and only if
g € 0(H>* + C(T)).

Chalendar, Fricain and Timotin (in a survey article)
ask for an example of a compact TTO with symbol
in 0(H> + C(T)) that possesses no continuous
symbol.

We do this next.



Compact operators without continuous
symbols |l

Example (Gorkin—JRP). Let B be an interpolating
Blaschke product with zero sequence (z,) clustering
at every point of T.

Let f € H* 4+ C(T) with f(z,) — 0 but f(z,) # 0
for all n (for example, f could be another Blaschke
product with nearby zeroes).

Then Af is compact, but has no continuous symbol.



Truncated Hankel operators (THO)

For 6 inner and a symbol g we may define the
truncated Hankel operator

BY: Ky — zKy,  BY(f) = Py(gf).
Since zKy = 0K}, we have in fact
By(f) = 0A4,(f),

as observed by Bessonov.

Multiplication by 6 is a unitary map from Ky onto
zKy, thus the results on norms and compactness of
TTO have natural analogues for THO.



The end

That's all. Thank you.



