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Fredholm operators and the essential spectrum

For Banach spaces X and Y , let B(X ,Y ) and K(X ,Y ) denote
the sets of bounded linear and compact linear operators from X
to Y , respectively.

For A ∈ B(X ,Y ), let

Ker A := {x ∈ X | Ax = 0}, Ran A := {Ax | x ∈ X}.

The operator A is called Fredholm if

dim Ker A < +∞, dim (X/Ran A) < +∞.

The essential spectrum of A ∈ B(X ) := B(X ,X ) is the set

Spece(A) := {λ ∈ C : A− λI is not Fredholm}.
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Essential norm

The essential norm of A ∈ B(X ,Y ) is defined as follows

‖A‖e := inf{‖A− K‖ : K ∈ K(X ,Y )}.

For any A ∈ B(X ), Spece(A) and ‖A‖e are equal to the
spectrum and the norm of the corresponding element [A] of the
Calkin algebra B(X )/K(X ).

re(A) := sup {|λ| : λ ∈ Spece(A)} ≤ ‖A‖e.
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Toeplitz operators

Hardy space:

Hp(T) := {f ∈ Lp(T)
∣∣ fn = 0 for n < 0}, 1 ≤ p ≤ ∞,

where fn is the n-th Fourier coefficient of f .

Toeplitz operator generated by a function a ∈ L∞(T):

T (a) : Hp(T)→ Hp(T), 1 < p <∞,
T (a)f = P(af ), f ∈ Hp(T),

where P is the Riesz projection:

P

(
+∞∑

n=−∞
gnζ

n

)
=

+∞∑
n=0

gnζ
n, ζ ∈ T.
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T (a) : Hp(T)→ Hp(T)

P. Hartman and A. Wintner (1954, p = 2),
I.B. Simonenko (1968)

a(T) ⊆ Spece(T (a))

Hence,
‖a‖L∞ ≤ re(T (a)) ≤ ‖T (a)‖e

On the other hand,

‖T (a)‖e ≤ ‖T (a)‖ = ‖Pa I‖ ≤ ‖P‖‖a‖L∞
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T (a) : Hp(T)→ Hp(T)

B. Hollenbeck and I.E. Verbitsky (2000):

‖P‖Lp→Lp =
1

sin π
p

This is considerably more difficult to prove than the result
(essentially) due to S.K. Pichorides (1972)

‖S‖Lp→Lp = max

{
tan

π

2p
, cot

π

2p

}
,

where S = 2P − I is the Cauchy singular integral operator.

Putting together:

‖a‖L∞ ≤ ‖T (a)‖e ≤
1

sin π
p
‖a‖L∞
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Example. Let

a0

(
eiϑ
)

:=
1

sin π
p
− cot

(
π

p

)
e±iπ/p, ±ϑ ∈ (0, π).

Then ‖a0‖L∞ = 1.

The Fredholm theory of Toeplitz operators with piecewise
continuous symbols (Gohberg-Krupnik) =⇒

1
sin π

p
∈ Spece(T (a0)) =⇒ ‖T (a0)‖e ≥

1
sin π

p

Hence the constant 1
sin π

p
is optimal in

‖a‖L∞ ≤ ‖T (a)‖e ≤
1

sin π
p
‖a‖L∞ , ∀a ∈ L∞(T).
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Toeplitz operators with continuous symbols

Consider T (a) : Hp(T)→ Hp(T), 1 < p <∞ with a ∈ C(T).

I. Gohberg (1952), ...

Spece(T (a)) = a(T).

In particular, Spece(T (a)) does not depend on p.

A. Böttcher, N. Krupnik, and B. Silbermann (1988): Does
‖T (a)‖e depend on p if a ∈ C(T)? Is it true that

‖T (a)‖e = ‖a‖L∞ , ∀a ∈ C(T)?
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em(z) := zm , z ∈ C, m ∈ Z.
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‖T (a)‖e = ‖a‖L∞ , ∀a ∈ (C + H∞)(T)

⇐⇒ ‖T (e−1)‖e = 1.

So, the question is whether or not the last equality holds.
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∣∣∣1− 2
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∀p ∈ (1,∞).
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Measures of noncompactness of a linear operator

Let Y be a Banach space. For a bounded subset Ω of Y , we
denote by χ(Ω) the greatest lower bound of the set of numbers
r such that Ω can be covered by a finite family of open balls of
radius r .

For A ∈ B(X ,Y ), set

‖A‖χ := χ (A(BX )) ,

where BX denotes the unit ball in X .

Let ‖A‖m denote the greatest lower bound of all numbers η
having the property that there exists a subspace M of X having
finite codimension and such that

‖Ax‖ ≤ η‖x‖, ∀x ∈ M.
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A. Lebow and M. Schechter (1971):

‖A‖χ/2 ≤ ‖A‖m ≤ 2‖A‖χ

and
‖A‖χ ≤ ‖A‖e , ‖A‖m ≤ ‖A‖e



Approximation properties of Banach spaces

A Banach space Y is said to have the bounded compact
approximation property (BCAP) if there exists a constant
M ∈ (0,+∞) such that given any ε > 0 and any finite set
F ⊂ Y , there exists an operator T ∈ K(Y ) such that
‖I− T‖ ≤ M and

‖y − Ty‖ < ε, ∀y ∈ F .

We say that Y has the dual compact approximation property
(DCAP) if there exists a constant M∗ ∈ (0,+∞) such that given
any ε > 0 and any finite set G ⊂ Y ∗, there exists an operator
T ∈ K(Y ) such that ‖I− T‖ ≤ M∗ and

‖z − T ∗z‖ < ε, ∀z ∈ G.

We denote by M(Y ) and M∗(Y ) the infima of the constants M
and M∗ for which the above conditions are satisfied.
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(K. Astala and H.-O. Tylli (1987): If ‖A‖e < M‖A‖χ for every
A ∈ B(X ,Y ) \ K(X ,Y ) and every Banach space X , then Y has
the BCAP and M(Y ) ≤ M.)

Theorem
If X has the DCAP, then

‖A‖e ≤ M∗(X )‖A‖m , ∀A ∈ B(X ,Y ).
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Approximation properties of Hardy spaces

Theorem
The Hardy space Hp = Hp(T), 1 < p <∞ has the bounded
compact approximation and the dual compact approximation
properties with

M(Hp),M∗(Hp) ≤ 2
∣∣∣1− 2

p

∣∣∣
.



Approximation properties of Hardy spaces

The proof of the above theorem uses the Fejér means

(Knf )
(

eiϑ
)

:= (Kn ∗ f )
(

eiϑ
)

=

∫ π

−π
Kn

(
eiϑ−iθ

)
f
(

eiθ
)

dθ,

Kn

(
eiθ
)

:=
1

2π

n∑
k=−n

(
1− |k |

n + 1

)
eikθ

=
1

2π(n + 1)

(
sin (n+1)θ

2

sin θ
2

)2

,

ϑ, θ ∈ [−π, π], n = 0,1,2, . . .

‖Kn‖Lp→Lp = 1 =⇒ ‖I− Kn‖Lp→Lp ≤ 2 for 1 ≤ p ≤ ∞.
Parseval’s theorem =⇒ ‖I− Kn‖L2→L2 = 1.

Interpolation =⇒ ‖I− Kn‖Lp→Lp ≤ 2
∣∣∣1− 2

p

∣∣∣.
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Reminder:

Theorem 2

‖T (a)‖e ≤ 2
∣∣∣1− 2

p

∣∣∣‖a‖L∞ ≤ 2‖a‖L∞ , ∀a ∈ (C + H∞)(T),

∀p ∈ (1,∞).

According to the above results, it is sufficient to show that

‖T (a)‖m = ‖a‖L∞ .

The latter is easy to prove if a = e−nh, h ∈ H∞(T).
Such functions are dense in (C + H∞)(T).
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Such functions are dense in (C + H∞)(T).
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‖T (e−1)‖e = ‖T (e−1)‖, ∀p ∈ (1,∞).

It is sufficient to show that

‖T (e−1)‖χ ≥ ‖T (e−1)‖.

For any ε > 0, there exists q ∈ Hp(T), such that ‖q‖Hp = 1 and
‖T (e−1)q‖Hp ≥ ‖T (e−1)‖ − ε.
Take any finite set {ϕ1, . . . , ϕm} ⊂ Hp(T). If N ∈ N is
suffuciently large, then

‖T (e−1)(q ◦ eN)− ϕj‖Hp ≥ ‖T (e−1)‖ − 2ε, j = 1, . . . ,m.
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Open problems and related results

What is the norm of the backward shift operator

T (e−1) : Hp(T)→ Hp(T), 1 ≤ p ≤ ∞?

Reminder: K0f = f (0).

‖T (e−1)‖ = ‖I− K0‖Hp→Hp ≤ ‖I− K0‖Lp→Lp ≤ 2
∣∣∣1− 2

p

∣∣∣ ≤ 2.

‖T (e−1)‖H∞→H∞ = 2 and ‖T (e−1)‖Hp→Hp → 2 as p →∞.

T. Ferguson (arXiv, 2017): ‖T (e−1)‖H1→H1 < 1.7047.
It follows from the proof that ‖T (e−1)‖Hp→Hp < 1.7047 if p is
sufficiently close to 1.
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T.F. Móri, Sharp inequalities between centered moments, 2009
+ complexification (not entirely trivial)

‖I− K0‖Lp→Lp = cp, 1 ≤ p ≤ ∞,

where

cp := max
0<α<1

(
αp−1 + (1− α)p−1

) 1
p
(
α

1
p−1 + (1− α)

1
p−1

)1− 1
p
,

1 < p <∞,

c1 := lim
p→1+0

cp = 2, c∞ := lim
p→∞

cp = 2.

c2 = 1, cp′ = cp for p′ = p
p−1 , and

1 ≤ cp ≤ 2
∣∣∣1− 2

p

∣∣∣
,

where the left inequality is strict unless p = 2, while the right
one is strict unless p = 1,2 or∞. Further,

cp ≥ 21− 2
p

(
2

ep

) 1
2p

, ∀p > 2.
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M(Hp), M∗(Hp), 1 < p <∞?
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Theorem

M(Lp) = M∗(Lp) = cp, 1 < p <∞.

T. Oikhberg (2011): Let X be a separable rearrangement
invariant non-atomic Banach function space not isometric to L2.
Then M(X ) > 1.
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Theorem
Let 1 ≤ p <∞ and T ∈ K(Lp) be such that I− T is not
invertible. Then

‖I− T‖Lp→Lp ≥ cp.

Corollary

Let 1 ≤ p <∞ and let Q : Lp → Lp, Q 6= I be a projection onto
a finite-codimensional subspace. Then

‖Q‖Lp→Lp ≥ cp.

B. Randrianantoanina (1995): Let X be a separable
rearrangement invariant non-atomic Banach function space not
isometric to L2. Then ‖Q‖ > 1 for every projection Q : X → X ,
Q 6= I onto a finite-codimensional subspace of X .
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Hp(T) is isomorphic (R. P. Boas, Jr, 1955)
but not isometric (for p 6= 2) to Lp(T).

F. Lancien, B. Randrianantoanina, and E. Ricard (2005): Let
1 ≤ p <∞, p 6= 2 and let Q : Hp → Hp be a projection onto a
subspaces of finite dimension larger than one. Then ‖Q‖ > 1.

Leo Tolstoy, Anna Karenina

("corrected" translation)

“All Hilbert spaces are alike; each Banach space is unhappy in
its own way."
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