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Fredholm operators and the essential spectrum
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KerA:={x € X| Ax =0}, RanA:={Ax|x € X}.
The operator A is called Fredholm if

dimKer A < +o00, dim(X/RanA) < +oc.

The essential spectrum of A € B(X) := B(X, X) is the set

Spec.(A) .= {A € C: A— Xl is not Fredholm}.
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Essential norm

The essential norm of A € B(X, Y) is defined as follows

|Alle :=inf{||[A—- K] : KeK(X,Y)}.

For any A € B(X), Spec.(A) and ||A||c are equal to the
spectrum and the norm of the corresponding element [A] of the
Calkin algebra B(X)/K(X).

re(A) :==sup{|A] : A € Spec.(A)} < ||Alle.
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Toeplitz operators

Hardy space:
HP(T) := {f € LP(T)| f,=0 forn< 0}, 1<p< oo,

where f, is the n-th Fourier coefficient of f.

Toeplitz operator generated by a function a € L*°(T):

T(a) : HP(T) — HP(T), 1 < p < o,
T(a)f = P(af), fe HP(T),

where P is the Riesz projection:

+oo “+oo
P( > g,,g”) => gn¢", CeT.

n=—o00 n=0



T(a): HP(T) — HP(T)

P. Hartman and A. Wintner (1954, p = 2),
[.B. Simonenko (1968)

a(T) < Spec.(T(a))



T(a): HP(T) — HP(T)

P. Hartman and A. Wintner (1954, p = 2),
[.B. Simonenko (1968)

a(T) < Spec.(T(a))

Hence,
lall < re(T(a)) < [IT(a)lle



T(a): HP(T) — HP(T)

P. Hartman and A. Wintner (1954, p = 2),
[.B. Simonenko (1968)

a(T) C Spec(T(a))
Hence,
lall < re(T(a)) < [IT(a)lle
On the other hand,

IT(@)lle < IT(a)ll = [[Palll < [Pll|[all =
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T(a): HP(T) — HP(T)

B. Hollenbeck and I.E. Verbitsky (2000):
1

IPlle—stp = =

Sin —

©

This is considerably more difficult to prove than the result
(essentially) due to S.K. Pichorides (1972)

I|S||Lp—1p = max {tan 1, cotﬂ} ,
2p 2p

where S =2P —1 is the Cauchy singular integral operator.

Putting together:

1
Jales < IT@e < 55
o

&l L
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Example. Let
— cot <7T> et™/P 19 e (0,7).

; 1
vy ._
& <e ) T sin%
Then ||ag|| = 1.

The Fredholm theory of Toeplitz operators with piecewise
continuous symbols (Gohberg-Krupnik) =

€ Spec.(T(a0)) = [ T(a0)lle > ==
Slnﬁ

inZ~t

Slp

Hence the constant '~ is optimal in
o

llal|f, Vae L(T).

alli~ < | T(a)lle <
lalle= <ITG@: < s



Toeplitz operators with continuous symbols

Consider T(a) : HP(T) — HP(T), 1 < p < oo with a € C(T).
|. Gohberg (1952), ...
Spec.(T(a)) = a(T).

In particular, Spec.(7(a)) does not depend on p.



Toeplitz operators with continuous symbols

Consider T(a) : HP(T) — HP(T), 1 < p < oo with a € C(T).
|. Gohberg (1952), ...
Spec.(T(a)) = a(T).

In particular, Spec.(7(a)) does not depend on p.

A. Béttcher, N. Krupnik, and B. Silbermann (1988): Does
|IT(a)|le depend on p if a € C(T)? Is it true that

IT(@)le = llall=, vae C(T)?
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Notation

en(z):=2", zeC, meZ.

A. Béttcher, N. Krupnik, and B. Silbermann (1988):

IT(@)e = llall~, Vvae (C+H*)(T)
= [[T(e-1)le=1.

So, the question is whether or not the last equality holds.
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T(a): HP(T) — HP(T)

IT(e—1)lle = T(e—1)ll, vpe(1,00).

A. Béttcher, N. Krupnik, and B. Silbermann (1988):

IT(e-1)l>1, vpe(1,00)\{2}

_2
IT@le <2 ljae < 2)alie,  vae (C+H¥)T),

Vp € (1, 00).
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Measures of noncompactness of a linear operator

Let Y be a Banach space. For a bounded subset 2 of Y, we
denote by x(Q2) the greatest lower bound of the set of numbers
r such that Q2 can be covered by a finite family of open balls of
radius r.

For Ac B(X,Y), set

Al := x (A(Bx))
where By denotes the unit ball in X.

Let ||A||m denote the greatest lower bound of all numbers 7
having the property that there exists a subspace M of X having
finite codimension and such that

IAX[] < nllx][, vx e M.



A. Lebow and M. Schechter (1971):
1Al /2 < [[Allm < 2[|Allx

and
[Allx < [[Alle,  [[Allm < [|Alle
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Approximation properties of Banach spaces

A Banach space Y is said to have the bounded compact
approximation property (BCAP) if there exists a constant
M € (0, +o0) such that given any £ > 0 and any finite set
F C Y, there exists an operator T € KC(Y) such that
IT—T| <M and

ly =Tyl <e, VyeF.
We say that Y has the dual compact approximation property
(DCAP) if there exists a constant M* € (0, +o0) such that given

any € > 0 and any finite set G C Y*, there exists an operator
T € K(Y) suchthat I - T| < M* and

lz—T"z|| <e, VzeQG.

We denote by M(Y) and M*(Y) the infima of the constants M
and M* for which the above conditions are satisfied.
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A. Lebow and M. Schechter (1971): If Y has the BCAP, then
[Alle < M(Y)[|A[lx, VA€ B(X,Y)
and hence
[Alle <2M(Y)||Allm, VA€ B(X,Y).
(K. Astala and H.

-O.
AeB(X,Y)\K(X,
the BCAP and M(

Tylli (1987): If [|Alle < M||A]|, for every
Y) and every Banach space X, then Y has

)
Y)<M.)

If X has the DCAP, then

[Alle < M*(X)[[Allm, VA€ B(X,Y).




Approximation properties of Hardy spaces

Theorem

The Hardy space HP = HP(T), 1 < p < oo has the bounded
compact approximation and the dual compact approximation
properties with

M(HP), M (HP) < 2175




Approximation properties of Hardy spaces

The proof of the above theorem uses the Fejér means
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Approximation properties of Hardy spaces

The proof of the above theorem uses the Fejér means

(Knf) (e’ﬁ) = (Kn*f) (e"ﬁ) - / "k, (e’”*"")f(e"e) do,

K (ei6> .: 1 i (1 _’k> ko
" To2r n+1

k=—n

B 1 sin 7('721)9 ?
o 27r(n+ 1) sing ’

¥,0 € [-m, 7], n=0,1,2,...

[Knlltpsr =1 = [[I=Kp|[rp <2 for1 < p<oc.
Parseval’'s theorem — ||I — Kjl[;2_,2 = 1.

_2
Interpolation = ||I — Kp||p—1p < 2" 5!,
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Reminder:

_2
IT@le <2 g~ <2)alie,  vae (C+H®)T),
Vp € (1, 00).

According to the above results, it is sufficient to show that
IT(a)llm = l|allLe-

The latter is easy to prove if a = e_ph, h € H*(T).
Such functions are dense in (C + H>)(T).
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Reminder:

IT(e—1)lle = [IT(e—1)ll, Vp e (1,00).

It is sufficient to show that
[ T(e-1)llx = [ T(e-1)]-

For any € > 0, there exists g € HP(T), such that ||q||z» = 1 and
[ T(e~1)qllme > [ T(e—1)| —=.

Take any finite set {¢1,...,om} C HP(T). f N e Niis
suffuciently large, then

IT(e_1)(goen) —¢jllwe > | T(e_1)| —2¢, j=1,...,m.
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Open problems and related results

What is the norm of the backward shift operator

T(e_1): HP(T) — HP(T), 1 < p < 0o?

Reminder: Koyf = f(0).

1-2
IT(e 1) = Il = Kol oro < 1~ Kollioir <2 5 < 2.
HT(e_1)HHoo_>Hoo =2 and HT(e_1)HHp_>Hp — 2 as p — oc.

T. Ferguson (arXiv, 2017): || T(e_1)||y1_yt < 1.7047.
It follows from the proof that || T(e_1)| e e < 1.7047 if pis
sufficiently close to 1.
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T.F. Moéri, Sharp inequalities between centered moments, 2009
+ complexification (not entirely trivial)

IT—Kollosp = Cp, 1 < p <00,

where
; N yaus N5
Cp = max (ap* + (1 — )P~ )p <ow—1 + (1 —a)p—1> ,
O<a<i
1<p< oo,
c1:= lim ¢p=2, Cx:= lim ¢p=2.

p—14+0 p—o0
co=1,¢y = cpfor p’ = 524, and

1< cp<albl,

where the left inequality is strict unless p = 2, while the right
one is strict unless p = 1,2 or oo. Further,

1-2 2 é
Cp=>2 P @) Vp > 2.
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Open problems and related results

What are the values of

IT = KnllHo—He, ||T— Knllo— e,
M(HP), M*(HP), 1< p < o00?

11— Knllpe— e > ([T — Kol gp— 1,
T = Knllee—re = 1= Kol[p—s1p, VN €N.



M(LP) = M*(LP) = cp, 1< p < oco.




M(LP) = M*(LP) = ¢cp, 1 < p < 0.

T. Oikhberg (2011): Let X be a separable rearrangement
invariant non-atomic Banach function space not isometric to L2.
Then M(X) > 1.
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Let1 <p<ooand T € K(LP) be such thatT — T is not
invertible. Then

IT=Tlle—p = Cp.

Let1 <p<ocandlet Q:LP — LP, Q #1be a projection onto
a finite-codimensional subspace. Then

1Qlp—1p > Cp-

B. Randrianantoanina (1995): Let X be a separable
rearrangement invariant non-atomic Banach function space not
isometric to L2. Then ||Q|| > 1 for every projection Q : X — X,
Q # I onto a finite-codimensional subspace of X.
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HP(T) is isomorphic (R. P. Boas, Jr, 1955)
but not isometric (for p # 2) to LP(T).

F. Lancien, B. Randrianantoanina, and E. Ricard (2005): Let
1<p<oo,p#2andlet Q: HP — HP be a projection onto a
subspaces of finite dimension larger than one. Then || Q|| > 1.

Leo Tolstoy, Anna Karenina ("corrected" translation)
“All Hilbert spaces are alike; each Banach space is unhappy in
its own way."



