Finite rank perturbations, Clark's model and matrix weights

Sergei Treil¹

¹Department of Mathematics Brown University

Workshop "Spectral theory of Hankel operators and related topics"
King's college, London
November 3, 2017

- 1 Main objects: Finite rank perturbations and models
 - Finite rank perturbations
 - Functional models
 - \bullet Defects and characteristic function for T_{Γ}
- Toward a formula for the adjoint Clark operator
 - Spectral representation of unitary perturbations
 - Model, agreement of parametrizing operators
 - Representation formula, rank 1 case
- 3 Clark operator and its adjoint in matrix case
 - A universal formula for adjoint operator in matrix case
 - Adjoint Clark operator Φ_{Γ}^*
 - ullet Direct Clark operator Φ_Γ

Finite rank perturbations

- U unitary in \mathcal{H} , subset $R \subset \mathcal{H}$ is fixed, $\dim R = d$.
- Operators K, $\operatorname{Ran} K \subset R$, such that U+K is unitary (contraction) are parametrized by $d \times d$ unitary (contractive) matrices Γ : namely fix unitary $\mathbf{B}: \mathbb{C}^d \to R$ then unitary (contractive) $d \times d$ matrices Γ parametrize all unitary (contractive) perturbed operators

$$T_{\Gamma} = U + \mathbf{B}(\Gamma - \mathbf{I})\mathbf{B}^*U$$

Indeed, trivial when $U = \mathbf{I}$, and right multiplying by U get the formula.

Familiar parametrization for rank one perturbations

$$T_{\gamma} = U + (\gamma - 1)bb^*U = U + (\gamma - 1)b(b_*)^*, \qquad b_* = U^*b.$$

$$||b|| = 1.$$

Finite rank perturbations

$$T_{\Gamma} = U + \mathbf{B}(\Gamma - \mathbf{I})\mathbf{B}^*U, \qquad \Gamma : \mathbb{C}^d \to \mathbb{C}^d.$$

- WLOG $R = \operatorname{Ran} \mathbf{B}$ is *-cyclic.
- If Γ is a strict contraction, i.e. $\|\Gamma x\|<\|x\|$ $\forall x$, then T_{Γ} is a completely non-unitary (c.n.u.) contraction. C.n.u. means that there is no a reducing subspace on which the operator is unitary.
- \bullet As c.n.u. T_Γ admits a functional model $\mathcal{M}_\Gamma = \mathcal{M}_{T_\Gamma}$

Goal

$$T_{\Gamma} = U + \mathbf{B}(\Gamma - \mathbf{I})\mathbf{B}^*U, \qquad \Gamma : \mathbb{C}^d \to \mathbb{C}^d, \ \|\Gamma\| < 1.$$

- ullet Consider U in its spectral representation.
- \bullet We assumed that $\operatorname{Ran} {\bf B}$ is *-cyclic, so T_{Γ} is c.n.u.
- T_{Γ} is unitarily equivalent to its functional model $\mathcal{M}_{\Gamma}:\mathcal{K}_{\theta}\to\mathcal{K}_{\theta}$, (for example Sz.-Nagy-Foiaș model), where $\theta=\theta_T$ is the characteristic function.
- \bullet Want to describe the Clark operator, i.e. a unitary operator $\Phi=\Phi_{\Gamma}$ such that

$$T_{\Gamma}\Phi_{\Gamma} = \Phi_{\Gamma}\mathcal{M}_{\Gamma}.$$

U in spectral representation

ullet WLOG assume that $U=M_{\xi}$ in

$$\mathcal{H} = \int_{\mathbb{T}}^{\oplus} E(\xi) \mathrm{d}\mu(\xi),$$

 $E(\xi) = \operatorname{span}\{e_k : 1 \le k \le N(\xi)\} \subset E, \{e_k\}_k$ — ONB in E.

• $\mathcal{H} \subset L^2(\mu; E)$:

$$\mathcal{H} = \{ f \in L^2(\mu; E) : f(\xi) \in E(\xi) \text{ μ-a.e.} \}.$$

• Define matrix function $B, B(\xi) : \mathbb{C}^d \to E(\xi) \subset E$,

$$B(\xi)e = \mathbf{B}e(\xi), \qquad e \in \mathbb{C}^d.$$

• Ran **B** is *-cyclic iff

$$\operatorname{Ran} B(\xi) = E(\xi)$$
 μ -a.e.

Functional model for a a c.n.u. contraction.

- ullet The model ${\mathcal M}$ for a contraction is not a multiplication operator, it cannot be.
- It is a compression of a multiplication operator

$$\mathcal{M} = P_{\mathcal{K}} M_z \Big|_{\mathcal{K}},$$

where $\mathcal K$ is an appropriate subspace of a (generally vector valued) L^2 space.

- The vector-valued L^2 space comes from the spectral representation of the minimal unitary dilation U of T (will be explained later)
- The characteristic function θ is a unitary invariant of T and main object in the theory of the model.

Following Nikolskii–Vasyunin [7] the functional model is constructed as follows:

• For a contraction $T: \mathcal{K} \to \mathcal{K}$ consider its *minimal* unitary dilations $\mathcal{U}: \mathcal{H} \to \mathcal{H}, \ \mathcal{K} \subset \mathcal{H},$

$$T^n = P_{\mathcal{K}} \mathcal{U}^n \mid \mathcal{K}, \qquad n \ge 0.$$

- $oldsymbol{0}$ Pick a spectral representation of $\mathcal U$
- Work out formulas in this spectral representation
- $\begin{tabular}{l} \blacksquare & \begin{tabular}{l} \blacksquare & \begin{tabular}{l}$
- **5** Model operator \mathcal{M} is a compression of the model for \mathcal{U} , i.e. of the multiplication operator, $\mathcal{M}=P_{\kappa}M_{z}\left|_{\kappa}\right|$.

Specific representations give us a *transcription* of the model. Among common transcriptions are: the Sz.-Nagy–Foiaș transcription, the de Branges–Rovnyak transcription, Pavlov transcription.

Characteristic function

Let T be a c.n.u.

Defect operators and subspaces,

$$\begin{split} D_T &:= (\mathbf{I} - T^*T)^{1/2}, & D_{T^*} &:= (\mathbf{I} - TT^*)^{1/2}, \\ \mathfrak{D}_T &:= \operatorname{clos} \operatorname{Ran} D_T, & \mathfrak{D}_{T^*} &:= \operatorname{clos} \operatorname{Ran} D_{T^*}. \end{split}$$

Let $\dim\mathfrak{D}=\dim\mathfrak{D}_{_T}$, $\dim\mathfrak{D}_*=\dim\mathfrak{D}_{_{T^*}}$, and let

$$V:\mathfrak{D}_{T}\to\mathfrak{D}, \qquad V_{*}:\mathfrak{D}_{T^{*}}\to\mathfrak{D}_{*}$$

be unitary operators (coordinate operators).

The characteristic function $\theta=\theta_T=\theta_{T,V,V_*}$, $\theta(z):\mathfrak{D}\to\mathfrak{D}_*$ is defined as

$$\theta_T(z) = V_* \left(-T + z D_{T^*} \left(\mathbf{I}_{\mathcal{H}} - z T^* \right)^{-1} D_T \right) V^* \Big|_{\mathfrak{D}}, \qquad z \in \mathbb{D}.$$

Sz.-Nagy-Foiaș and de Branges-Rovnyak transcriptions

• Sz.-Nagy-Foiaș: $\mathcal{H}=L^2(\mathfrak{D}_*\oplus\mathfrak{D})$ (non-weighted, $W\equiv I$).

$$\mathcal{K}_{ heta} := \left(egin{array}{c} H^2_{\mathfrak{D}_*} \ \operatorname{clos} \Delta L^2_{\mathfrak{D}} \end{array}
ight) \ominus \left(egin{array}{c} heta \ \Delta \end{array}
ight) H^2_{\mathfrak{D}},$$

where $\Delta(z) := (1 - \theta(z)^* \theta(z))^{1/2}$, $z \in \mathbb{T}$.

• de Branges–Rovnyak: $\mathcal{H}=L^2(\mathfrak{D}_*\oplus\mathfrak{D},W_{\theta}^{[-1]})$, where

$$W_{\theta}(z) = \begin{pmatrix} I & \theta(z) \\ \theta(z)^* & I \end{pmatrix}$$

and $W_{ heta}^{[-1]}$ is the Moore–Penrose inverse of $W_{ heta}$. $\mathcal{K}_{ heta}$ is given by

$$\left\{ \left(\begin{array}{c} g_+ \\ g_- \end{array} \right) : \ g_+ \in H^2(\mathfrak{D}_*), \ g_- \in H^2_-(\mathfrak{D}), \ g_- - \theta^* g_+ \in \Delta L^2(\mathfrak{D}) \right\}.$$

Defects and characteristic function for T_{Γ}

$$\text{Recall: } T_{\Gamma} = U + \mathbf{B}(\Gamma - \mathbf{I})\mathbf{B}^*U, \qquad \Gamma: \mathbb{C}^d \to \mathbb{C}^d, \quad \|\Gamma\| < 1.$$

- $\bullet \ \mathfrak{D}_{T_{\Gamma}} = \operatorname{Ran}(\mathbf{B}^*U)^* = \operatorname{Ran}U^*\mathbf{B} \ \text{ and } \ \mathfrak{D}_{T_{\Gamma}^*} = \operatorname{Ran}\mathbf{B}$
- In the scalar case \mathfrak{D}_{T_γ} and $\mathfrak{D}_{T_\gamma^*}$ are spanned by the vectors $\bar{\xi}$ and $\mathbf{1}$ respectively.
- \bullet Characteristic function $\theta_{\scriptscriptstyle T}$ of a contraction T is defined as

$$\theta_T(z) = V_* \left(-T + z D_{T^*} \left(\mathbf{I}_{\mathcal{H}} - z T^* \right)^{-1} D_T \right) V^* \Big|_{\mathfrak{D}}, \qquad z \in \mathbb{D}.$$

In our case
$$V_* = \mathbf{B}^*$$
, $V = (\mathbf{B}^*U)^* = U^*\mathbf{B}$,

$$T_{\Gamma} = U + \mathbf{B}(\Gamma - \mathbf{I})\mathbf{B}^*U, \qquad \Gamma: \mathbb{C}^d \to \mathbb{C}^d, \quad \|\Gamma\| < 1.$$

and $(\mathbf{I} - zU^*)^{-1}$ is just the multiplication by $(1 - z\bar{\xi})^{-1}$.

• To compute it use Woodbury inversion formula: if $B,C:E \to \mathcal{H}$ (in applications $\dim E$ is small), then

$$(\mathbf{I}_{\mathcal{H}} - CB^*)^{-1} = \mathbf{I}_{\mathcal{H}} + C(\mathbf{I}_E - B^*C)^{-1}B^*.$$

To get this formula just decompose $(\mathbf{I}_{\mathcal{H}}-CB^*)^{-1}$ using geometric series. A formal proof can be obtained just by checking.

• In rank one case we get the Sherman–Morrison inversion formula:

$$(I - cb^*)^{-1} = I + \frac{1}{d}cb^*, \qquad d = (c, b) = b^*c.$$

- \bullet $I-zT_{\Gamma}^{*}$ is a finite rank perturbation of $I-zU_{1}^{*}=I-zM_{\overline{\xi}};$
- The inverse of $I-zM_{\overline{\xi}}$ is multiplication by $(1-z\overline{\xi})^{-1}$, so Cauchy integrals appear.

Cauchy Transforms

Define Cauchy integrals

$$C_1 \tau(z) := \int_{\mathbb{T}} \frac{\overline{\xi} z d \tau(\xi)}{1 - \overline{\xi} z}, \qquad C_2 \tau(z) := \int_{\mathbb{T}} \frac{1 + \overline{\xi} z}{1 - \overline{\xi} z} d \tau(\xi).$$

• Consider matrix-valued measure $B(\xi)^*B(\xi)\mathrm{d}\mu(\xi)$ ($B^*B\mu$ as shorthand), and let

$$F_1(z) := C_1[B^*B\mu](z), \qquad F_2(z) := C_2[B^*B\mu](z), \qquad z \in \mathbb{D}$$

be the corresponding matrix-valued Cauchy transforms

Characteristic function for T_{Γ}

• Characteristic function θ_{γ} of T_{γ} :

$$\theta_{\gamma}(z) = -\gamma + \frac{(1-|\gamma|^2)\mathcal{C}_1\mu(z)}{1+(1-\overline{\gamma})\mathcal{C}_1\mu(z)} = \frac{(1-\gamma)\mathcal{C}_2\mu(z) - (1+\gamma)}{(1-\overline{\gamma})\mathcal{C}_2\mu(z) + (1+\overline{\gamma})},$$

- Note that $\theta_{\gamma}(0) = -\gamma$, because $\mathcal{C}_1\mu(0) = 0$
- In the matrix case

$$\theta_{\Gamma}(z) = -\Gamma + D_{\Gamma^*} F_1(z) \Big(\mathbf{I}_{\mathfrak{D}} - (\Gamma^* - \mathbf{I}_{\mathfrak{D}}) F_1(z) \Big)^{-1} D_{\Gamma}$$
$$= -\Gamma + D_{\Gamma^*} \Big(\mathbf{I}_{\mathfrak{D}} - F_1(z) (\Gamma^* - \mathbf{I}_{\mathfrak{D}}) \Big)^{-1} F_1(z) D_{\Gamma},$$

Characteristic function for T_0

• For $\gamma = 0$

$$\theta_0(z) = \frac{C_1 \mu(z)}{1 + C_1 \mu(z)} = \frac{C_2 \mu(z) - 1}{C_2 \mu(z) + 1}, \qquad z \in \mathbb{D}.$$

• For $\Gamma = \mathbf{0}$

$$\theta_{\mathbf{0}}(z) = F_1(z)(\mathbf{I} + F_1(z))^{-1} = (\mathbf{I} + F_1(z))^{-1}F_1(z)$$

= $(F_2(z) - \mathbf{I})(F_2(z) + \mathbf{I})^{-1} = (F_2(z) + \mathbf{I})^{-1}(F_2(z) - \mathbf{I}).$

LFTs for characteristic functions

In the scalar case

$$\theta_{\gamma}(z) = \frac{\theta_0(z) - \gamma}{1 - \overline{\gamma}\theta_0(z)},$$

In the matrix case

$$\begin{split} \boldsymbol{\theta}_{\Gamma} &= \boldsymbol{D}_{\Gamma^*}^{-1}(\boldsymbol{\theta_0} - \Gamma)(\mathbf{I_{\mathfrak{D}}} - \Gamma^*\boldsymbol{\theta_0})^{-1}\boldsymbol{D}_{\Gamma} \\ &= \boldsymbol{D}_{\Gamma^*}(\mathbf{I_{\mathfrak{D}}} - \boldsymbol{\theta_0}\Gamma^*)^{-1}(\boldsymbol{\theta_0} - \Gamma)\boldsymbol{D}_{\Gamma}^{-1} \end{split}$$

"Model" case of rank one unitary perturbations

Recall:
$$U_{\alpha}=U_1+(\alpha-1)b(b_*)^*$$
, $|\alpha|=1$
$$U_1=M_{\xi} \text{ in } L^2(\mu), \quad \mu(\mathbb{T})=1, \qquad b\equiv 1, \quad b_*=U_1^*b\equiv \overline{\xi}$$

- Let μ_{α} be the spectral measure of U_{α} corresponding to the vector b.
- Want to find a unitary operator $\mathcal{V}_{\alpha}:L^2(\mu)\to L^2(\mu_{\alpha})$ such that $\mathcal{V}_{\alpha}b=\mathbf{1}\in L^2(\mu_{\alpha})$ and such that

$$\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}.$$

Case of self-adjoint perturbations was treated earlier by Liaw-Treil in [3]. This case is treated similarly.

Pretending to be a physicist

Let \mathcal{V}_{α} be an integral operator with kernel $K(z,\xi)$.

• $U_{\alpha}=M_{\xi}+(\alpha-1)bb_{*}^{*}$, so we can rewrite the relation $\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}M_{\xi} = M_z \mathcal{V}_{\alpha} - (1 - \alpha)\mathcal{V}_{\alpha}bb_*^*.$$

• We know that $\mathcal{V}_{\alpha}b=1$, $b_*=\overline{\xi}$, so $\mathcal{V}_{\alpha}bb_*^*$ is an integral operator with kernel ξ

$$K(z,\xi)\xi = zK(z,\xi) - (\alpha - 1)\xi.$$

ullet Solving for K we get

$$K(z,\xi) = (1-\alpha)\frac{\xi}{\xi - z} = (1-\alpha)\frac{1}{1 - \overline{\xi}z}$$

Commutation relations and Cauchy type integrals

A general principle

Rank one commutation relations like

$$\mathcal{V}M_{\xi} = M_z \mathcal{V} + cb^*$$

usually give singular integral representations for \mathcal{V} .

First representation for \mathcal{V}_{α}

Theorem (Repesentation of V_{α})

The unitary operator $\mathcal{V}_{\alpha}:L^2(\mu)\to L^2(\mu_{\alpha})$ such that $\mathcal{V}_{\alpha}b=\mathbf{1}\in L^2(\mu_{\alpha})$ and such that

$$\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}.$$

is given by

$$\mathcal{V}_{\alpha}f(z) = f(z) + (1 - \alpha) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \bar{\xi}z} d\mu(\xi)$$

for
$$f \in C^1(\mathbb{T})$$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_*^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as $\mathcal{V}_{\alpha}U_1=M_z\mathcal{V}_{\alpha}+(1-\alpha)(\mathcal{V}_{\alpha}b)b_*^*$

• Recalling that $U_{\alpha}=U_{1}+(\alpha-1)bb_{*}^{*}$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1} = M_{z}\mathcal{V}_{\alpha} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}$$

• Right multiplying by U_1 we get

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}.$$

and applying the previous identity to $\mathcal{V}_{lpha}U_{1}$ in the right hand side, we get

$$\mathcal{V}_{\alpha}U_{1}^{2} = M_{z}^{2}\mathcal{V}_{\alpha} + (1-\alpha)\left[(M_{z}\mathcal{V}_{\alpha}b)b_{*}^{*} + (\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}\right]$$

• Recalling that $U_{\alpha}=U_{1}+(\alpha-1)bb_{*}^{*}$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1} = M_{z}\mathcal{V}_{\alpha} + (1 - \alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}$$

• Right multiplying by U_1 we get

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}.$$

and applying the previous identity to $\mathcal{V}_{lpha}U_{1}$ in the right hand side, we get

$$\mathcal{V}_{\alpha}U_{1}^{2} = M_{z}^{2}\mathcal{V}_{\alpha} + (1 - \alpha)\left[(M_{z}\mathcal{V}_{\alpha}b)b_{*}^{*} + (\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1} \right]$$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_*^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1} = M_{z}\mathcal{V}_{\alpha} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}$$

• Right multiplying by U_1 we get

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}.$$

and applying the previous identity to $\mathcal{V}_{lpha}U_{1}$ in the right hand side, we get

$$\mathcal{V}_{\alpha}U_{1}^{2} = M_{z}^{2}\mathcal{V}_{\alpha} + (1 - \alpha)\left[(M_{z}\mathcal{V}_{\alpha}b)b_{*}^{*} + (\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1} \right]$$

By induction we get

$$\mathcal{V}_{\alpha}U_{1}^{n} = M_{z}^{n}\mathcal{V}_{\alpha} + (1-\alpha)\sum_{k=1}^{n} M_{z}^{k-1}(\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}^{n-k}.$$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_*^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1} = M_{z}\mathcal{V}_{\alpha} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}$$

• Right multiplying by U_1 we get

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}.$$

and applying the previous identity to $\mathcal{V}_{lpha}U_{1}$ in the right hand side, we get

$$\mathcal{V}_{\alpha}U_{1}^{2} = M_{z}^{2}\mathcal{V}_{\alpha} + (1 - \alpha)\left[(M_{z}\mathcal{V}_{\alpha}b)b_{*}^{*} + (\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1} \right]$$

By induction we get

$$\mathcal{V}_{\alpha}U_{1}^{n} = M_{z}^{n}\mathcal{V}_{\alpha} + (1-\alpha)\sum_{k=1}^{n} M_{z}^{k-1}(\mathcal{V}_{\alpha}b)b_{*}^{*}U_{1}^{n-k}.$$

• Applying to $b \equiv 1$ and summing geometric progression we get the formula for $f(\xi) = \xi^n$, $n \ge 0$.

Idea of the proof, continued

- To get the formula for $\overline{\xi}^n$ we use $\mathcal{V}_{\alpha}U_{\alpha}^*=M_{\overline{z}}\mathcal{V}_{\alpha}$, which is obtained by taking adjoint in $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$.
- \bullet Extend the formula from trig. polynomials to $f \in C^1$ by standard approximation reasoning.

Idea of the proof, continued

- To get the formula for $\overline{\xi}^n$ we use $\mathcal{V}_{\alpha}U_{\alpha}^*=M_{\overline{z}}\mathcal{V}_{\alpha}$, which is obtained by taking adjoint in $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$.
- \bullet Extend the formula from trig. polynomials to $f\in C^1$ by standard approximation reasoning.

A general statement

Rank one commutation relations like

$$\mathcal{V}M_{\xi} = M_z \mathcal{V} + cb^*$$

usually give singular integral representations for \mathcal{V} .

Singular integral operators

Recall that
$$\mathcal{V}_{\alpha}f(z) = f(z) + (1-\alpha)\int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \bar{\xi}z} \, d\mu(\xi)$$

Theorem (Regularization of the weighted Cauchy transform)

The integral operators $T_r = T_r^{\alpha}: L^2(\mu) \to L^2(\mu_{\alpha})$ with kernels $1/(1-r\overline{\xi}z)$, $r \in \mathbb{R}_+ \setminus \{1\}$ are uniformly bounded.

- Let $Tf(z) := \int_{\mathbb{T}} \frac{f(\xi)}{1-\overline{\xi}z} d\mu(\xi)$; well defined for $z \notin \operatorname{supp} f$
- Since \mathcal{V}_{α} is bounded, we get for $f,g\in C^1$, $\operatorname{supp} f\cap\operatorname{supp} g=\varnothing$

$$(Tf,g)_{L^2(\mu_\alpha)} \le C \|f\|_{L^2(\mu)} \|g\|_{L^2(\mu_\alpha)}$$

• By a theorem of Liaw-Treil [4] this implies uniform boundedness of the regularizations T_r if the measures μ and μ_{α} do not have common atoms (U_1 and U_{α} do not have common eigenvalues).

Singular integral operators

- Uniform boundedness of T_r together with μ_{α} -a.e. convergence of $T_r f$ imply existence of w.o.t.-limits $T_+^{\alpha} = \text{w.o.t.-} \lim_{r \to 1^{\mp}} T_r$.
- ullet Using T_+^{lpha} we can rewrite the representation

$$\mathcal{V}_{\alpha}f(z) = f(z) + (1 - \alpha) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \bar{\xi}z} d\mu(\xi)$$

as

$$\mathcal{V}_{\alpha}f = [\mathbf{1} - (1 - \alpha)T_{\pm}^{\alpha}\mathbf{1}]f + (1 - \alpha)T_{\pm}^{\alpha}f.$$

- $T^{\alpha}_{\pm}: L^{2}(\mu) \to L^{2}(\mu_{\alpha})$, $T^{\alpha}_{\pm}f$ is given by boundary values of $\mathcal{C}[f\mu]$, $\mathcal{C}\tau(z) = \int_{\mathbb{T}} (1 \bar{\xi}z)^{-1} \mathrm{d}\tau(\xi)$.
- $(\mu_{\alpha})_{\rm a}$ -a.e. convergence follows from classical results about jumps of Cauchy transform; $(\mu_{\alpha})_{\rm s}$ -a.e. convergence can be obtained from Poltoratskii's theorem about boundary values of the normalized Cauchy transform, see [10].
- For the weak convergence it is enough to have μ_{α} -a.e. convergence of T_rf for $f\in C^1$, which can be proved using elementary methods.

Model, agreement of coordinate and parametrizing operators

- Let T be a c.n.u. contraction, $V:\mathfrak{D}_T=\mathfrak{D},\ V:\mathfrak{D}_{T^*}=\mathfrak{D}_*$ unitary operators (coordinate operators),
- $\theta = \theta_{T,V,V_*} \in H^\infty(\mathfrak{D} \to \mathfrak{D}_*)$ its characteristic function, $\mathcal{M}_\theta : \mathcal{K}_\theta \to \mathcal{K}_\theta$ the model operator.
- We say that unitary $\mathbf{C}:\mathfrak{D}\to\mathfrak{D}_{\mathcal{M}_{\theta}}$, $\mathbf{C}_*:\mathfrak{D}_*\to\mathfrak{D}_{\mathcal{M}_{\theta}^*}$ agree with V, V_* if

$$\mathbf{C}^* = V\Phi \Big|_{\mathfrak{D}_{\mathcal{M}_{\theta}}}, \qquad \mathbf{C}_*^* = V_*\Phi \Big|_{\mathfrak{D}_{\mathcal{M}_{\theta}^*}}.$$

for a unitary $\Phi: \mathcal{K}_{\theta} \to \mathcal{H}$ such that $T\Phi = \Phi \mathcal{M}_{\theta}$

Model, agreement of coordinate and parametrizing operators

In other words, the following diagrams commute:

Model: agreement

In the Sz.-Nagy-Foiaș notation

$$\mathbf{C}_* e_* = \begin{pmatrix} \mathbf{I} - \theta(z)\theta^*(0) \\ -\Delta(z)\theta^*(0) \end{pmatrix} (\mathbf{I} - \theta(0)\theta^*(0))^{-1/2} e_*, \qquad e_* \in \mathfrak{D}_*,$$

$$\mathbf{C} e = \begin{pmatrix} z^{-1} (\theta(z) - \theta(0)) \\ z^{-1} \Delta(z) \end{pmatrix} (\mathbf{I} - \theta^*(0)\theta(0))^{-1/2} e_*, \qquad e \in \mathfrak{D}_*,$$

For the Clark case $T=T_{\Gamma}=T+\mathbf{B}(\Gamma-\mathbf{I})\mathbf{B}^{*}U$, $V=U^{*}\mathbf{B}$, $V_{*}=\mathbf{B}$, $\mathfrak{D}=\mathfrak{D}_{*}=\mathbb{C}^{d}$ we get, noticing that $\theta(0)=-\Gamma$ that

$$Ce(z) = C(z)e,$$
 $C_*e(z) = C_*(z)e,$

where

$$C_*(z) = \begin{pmatrix} \mathbf{I} + \theta(z)\Gamma^* \\ \Delta(z)\Gamma^* \end{pmatrix} D_{\Gamma^*}^{-1},$$

$$C(z) = z^{-1} \begin{pmatrix} \theta(z) + \Gamma \\ \Delta(z) \end{pmatrix} D_{\Gamma}^{-1};$$

Theorem (A "universal" representation formula)

In the rank one case the adjoint Clark operator Φ^* , $(C, C_*$ agree with Clark model) is given for $f \in C^1(\mathbb{T})$ by

$$\Phi_{\gamma}^* f(z) = C_*(z) f(z) + C_1(z) \int \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi), \quad z \in \mathbb{T},$$

where $C_1(z) = C_*(z) - zC(z)$

Regularizing Cauchy Transform we get the following representation of the Φ^* ,

$$\Phi^* f(z) = A(z) f(z) + C_1(z) C_+ [f\mu](z),$$

where $A = C_* - C_1 \mathcal{C}_+ \mu$,

$$C\tau(z) = \int_{\mathbb{T}} \frac{1}{1 - \bar{\xi}z} d\tau(\xi).$$

 \mathcal{C}_+ means boundary values of $\mathcal{C} au(z)$, $z\in\mathbb{D}$.

• Write, denoting $C_2(z) := zC(z)$,

$$\mathcal{M}_{\theta_{\gamma}} = M_z - C_2 C^* - \theta_{\gamma}(0) C_* C^*$$
$$= M_z + (\gamma C_* - C_2) C^*.$$

Rank one perturbation of M_z ! Should get at most rank 2 commutation relation.

• Write, denoting $C_2(z) := zC(z)$,

$$\mathcal{M}_{\theta_{\gamma}} = M_z - C_2 C^* - \theta_{\gamma}(0) C_* C^*$$
$$= M_z + (\gamma C_* - C_2) C^*.$$

Rank one perturbation of M_z ! Should get at most rank 2 commutation relation.

 \bullet Using this identity rewrite $\Phi_{\gamma}^*T_{\gamma}=\mathcal{M}_{\theta_{\gamma}}\Phi_{\gamma}^*$ as

$$\Phi_{\gamma}^* U + (\gamma - 1)C_* b^* U = M_z \Phi_{\gamma}^* + (\gamma C_* - C_2) b^* U$$

or equivalently

$$\Phi_{\gamma}^* U = M_z \Phi_{\gamma}^* + (C_* - C_2) b^* U.$$

We got rank one commutation relation!

Commutation relations imply integral representation.

Idea of the proof, difficulties

Formally the right side of

$$\Phi_{\gamma}^* U = M_z \Phi_{\gamma}^* + (C_* - C_2) b^* U. \tag{*}$$

acts from $L^2(\mu)$ to outside of \mathcal{K}_{θ} .

• To get $\Phi_{\gamma}^* \overline{\xi}^n$ we use the commutant relation

$$\Phi_{\gamma}^* U^* = M_{\overline{z}} \Phi_{\gamma}^* + (C - M_{\overline{z}} C_*) b^*$$

= $M_{\overline{z}} \Phi_{\gamma}^* - M_{\overline{z}} (C_* - C_2) b^*,$

which cannot be obtained by taking the adjoint of (*).

• It is a miracle that the formulas for $\Phi_{\gamma}^*\xi^n$ and $\Phi_{\gamma}^*\overline{\xi}^n$ agree.

Universal formula: for $b \in \operatorname{Ran} \mathbf{B}$ and scalar $h \in C^1(\mathbb{T})$

$$(\Phi^* h b)(z) = h(z) C_*(z) \mathbf{B}^* b + C_1(z) \int_{\mathbb{T}} \frac{h(\xi) - h(z)}{1 - z\overline{\xi}} B^*(\xi) b(\xi) d\mu(\xi)$$

where, recall $C_1(z) = C_*(z) - zC(z)$.

- Matrix function B is defined by $B(\xi)e = (\mathbf{B}e)(\xi)$, $e \in \mathbb{C}^d$, so $\mathbf{B}^*b = \int_{\mathbb{T}} B(\xi)^*b(\xi)\mathrm{d}\mu(\xi)$.
- As in the scalar case, Φ^* has Cauchy transform part, plus multiplication part.
- Cauchy transform part is easy (put f = hb),

$$f \mapsto C_1 \mathcal{C}_+[B^* f \mu], \qquad f \in \mathcal{H} \subset L^2(\mu; E).$$

where, recall

$$C\tau(z) = \int_{\mathbb{T}} \frac{1}{1 - \bar{\xi}z} d\tau(\xi).$$

and C_+ means boundary values of $C\tau(z)$, $z \in \mathbb{D}$.

Representation in the Sz.-Nagy-Foiaș transcription

Denote by $F = \mathcal{C}_+[B^*B\mu]$. Recall $\Delta_{\Gamma} : (\mathbf{I} - \theta_{\Gamma}^*\theta_{\Gamma})^{1/2}$.

• The adjoint Clark operator $\Phi^*: \mathcal{H} \subset L^2(\mu:E) \to \mathcal{K}_{\theta}$ is given by

$$\Phi^* f = \begin{pmatrix} 0 \\ \Psi_2 \end{pmatrix} f + \begin{pmatrix} (\mathbf{I} + \theta_\Gamma \Gamma^*) D_{\Gamma^*}^{-1} F^{-1} \\ \Delta_\Gamma D_\Gamma^{-1} (\Gamma^* - \mathbf{I}) \end{pmatrix} \mathcal{C}_+ [B^* f \mu],$$

with $\Psi_2(z) = \widetilde{\Psi}_2(z) R(z)$, where

$$\begin{split} \widetilde{\Psi}_2(z) &= \Delta_{\Gamma} D_{\Gamma}^{-1}(\Gamma^* + (\mathbf{I} - \Gamma^*) F(z)) \\ &= \Delta_{\Gamma} D_{\Gamma}^{-1}(\mathbf{I} - \Gamma^* \theta_{\mathbf{0}}(z)) F(z) \quad \quad \text{a.e. on } \mathbb{T}, \end{split}$$

and R is a measurable right inverse for the matrix-valued function B.

• Formula does not depend on the choice of R, because μ_{ac} -a.e.

$$\widetilde{\Psi}_2^*\widetilde{\Psi}_2 = F^*\Delta_{\mathbf{0}}^2F = B^*Bw$$

and so $\Psi_2(\xi)^*\Psi_2(\xi)=w(\xi)\mathbf{I}_{E(\xi)}$; here w is the density of μ

Matrix case: spectral representation with matrix weight

Consider the weighted space $L^2(B^*B\mu)$,

$$||f||_{L^2(B^*B\mu)}^2 := \int_{\mathbb{T}} (B(\xi)^* B(\xi) f(\xi), f(\xi))_{\mathbb{C}^d} d\mu(\xi)$$

- The operator $\mathcal{U}: L^2(B^*B\mu) \to \mathcal{H}$, $\mathcal{U}f = Bf$ is unitary.
- The adjoint Clark operator $\Phi^*: L^2(B^*B\mu) \to \mathcal{K}_{\theta}$ is given by

$$\Phi^* f = \begin{pmatrix} 0 \\ \widetilde{\Psi}_2 \end{pmatrix} f + \begin{pmatrix} (\mathbf{I} + \theta_{\Gamma} \Gamma^*) D_{\Gamma^*}^{-1} F^{-1} \\ \Delta D_{\Gamma}^{-1} (\Gamma^* - \mathbf{I}) \end{pmatrix} \mathcal{C}_+ [B^* B f \mu],$$

where

$$F = \mathcal{C}_{+}[B^*B\mu], \qquad \widetilde{\Psi}_2(z) = \Delta D_{\Gamma}^{-1}(\Gamma^* + (\mathbf{I} - \Gamma^*)F(z))$$

Direct Clark operator (a.c. part)

Let $\Phi_{\Gamma}^* f = h = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$. We computed that

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \Psi_2 \end{pmatrix} f + \begin{pmatrix} (\mathbf{I} + \theta_\Gamma \Gamma^*) D_{\Gamma^*}^{-1} F^{-1} \\ \Delta_\Gamma D_\Gamma^{-1} (\Gamma^* - \mathbf{I}) \end{pmatrix} \mathcal{C}_+ [B^* f \mu].$$

Subtract from the second component an appropriate left multiple of the first component to get rid of $C_+[B^*f\mu]$:

$$\Psi_2 f = h_2 - \Delta_{\Gamma} D_{\Gamma}^{-1} (\Gamma^* - \mathbf{I}) F D_{\Gamma^*} (\mathbf{I} + \theta_{\Gamma} \Gamma^*)^{-1} h_1$$

Left multiplying by Ψ_2^* and using $\Psi_2^*\Psi_2=w(\xi)\mathbf{I}_{E(\xi)}$, we get a.c. part

$$\begin{split} wf &= R^*F^*(\mathbf{I} - \theta_0^*\Gamma)D_{\Gamma}^{-1}\Delta_{\Gamma}h_2 \\ &- R^*F^*(\mathbf{I} - \theta_0^*\Gamma)D_{\Gamma}^{-1}\Delta_{\Gamma}^2D_{\Gamma}^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*(\mathbf{I} - \theta_0^*\Gamma)D_{\Gamma}^{-1}\Delta_{\Gamma}h_2 \\ &- R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\Gamma^*}(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\mathbf{0}}^*(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\mathbf{0}}^*(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\mathbf{0}}^*(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\mathbf{0}}^*(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\mathbf{0}}^*(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\theta_{\mathbf{0}})^{-1}(\Gamma^* - \mathbf{I})FD_{\mathbf{0}}^*(\mathbf{I} + \theta_{\Gamma}\Gamma^*)^{-1}h_1 \\ &= R^*F^*\Delta_{\mathbf{0}}^2(\mathbf{I} - \Gamma^*\Phi_{\mathbf{0}})^{-1}(\Gamma^*\Phi_{\mathbf{0}} - \Gamma^*\Phi_{\mathbf{0}})^{-1}(\Gamma^*\Phi_{\mathbf$$

Direct Clark operator (singular part)

Lemma (A. Poltoratskii)

Let $f \in L^2(\mathbb{T}, \mu; \mathbb{C}^d)$. Then the nontagential boundary values of $\mathcal{C}[f\mu](z)/\mathcal{C}[\mu](z)$, $z \in \mathbb{D}$ exist and equal $f(\xi)$, μ_s -a.a. $\xi \in \mathbb{T}$.

We had

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \Psi_2 \end{pmatrix} f + \begin{pmatrix} (\mathbf{I} + \theta_{\Gamma} \Gamma^*) D_{\Gamma^*}^{-1} F^{-1} \\ \Delta_{\Gamma} D_{\Gamma}^{-1} (\Gamma^* - \mathbf{I}) \end{pmatrix} \mathcal{C}_{+}[B^* f \mu].$$

Divide by $C[\mu]$ and solve μ_s -a.e. for B^*f in the first component:

$$B^*f=rac{1}{\mathcal{C}[\mu]}FD_{\Gamma^*}(\mathbf{I}+ heta_{\Gamma}\Gamma^*)^{-1}h_1 \qquad \mu_{ ext{s}}$$
-a.e.

Left multiplying this identity by R^* we get that

$$\Phi h = f = rac{1}{\mathcal{C}[\mu]} R^* F D_{\Gamma^*} (\mathbf{I} + heta_\Gamma \Gamma^*)^{-1} h_1 \qquad \mu_{ ext{s}}$$
-a.e

Comparison with Clark model

- D. Clark started with model operator \mathcal{M}_{θ} , $(\theta \text{ inner} \iff \mu \text{ is purely singular})$ and considered it all unitary rank one perturbations.
- In our model it corresponds considering operator $U_{\gamma}=U_1+(\gamma-1)bb_1^*$, $\gamma=-\theta(0)$, then all unitary rank one perturbations are exactly the operators U_{α} , $|\alpha|=1$.
- ullet Clark measures $\widetilde{\mu}_{lpha}$ are the spectral measures of the operators $U_{lpha}.$
- If $\theta(0)=0$ them $\widetilde{\mu}_{\alpha}=\mu_{\alpha}$ and the Clark operators coincide with ours.
- If $\theta(0) \neq 0$ $\widetilde{\mu}_{\alpha}$ is a multiple μ_{α} , and the operators differ by a factor $c(\gamma)$.
- In Clark model $\widetilde{\mu}_{\alpha}$ is not a probability measure, $|c(\gamma)|$ compensate for that.

Comparison with Sarason's model

- D. Sarason in [11] presented a unitary operator between $H^2(\mu) = \overline{\operatorname{span}}\{z^n : n \in \mathbb{Z}_+\}$ and the de Branges space $\mathcal{H}(\theta)$; like Clark, he started with a model operator in \mathcal{K}_{θ}
- The space $\mathcal{H}(\theta)\subset H^2$ is defined as a range $(I-T_{\theta}T_{\theta^*})^{1/2}H^2$ endowed with the *range norm* (the minimal norm of the preimage); $T_{\varphi}:H^2\to H^2$ is a Toeplitz opearator, $T_{\varphi}f=P_{H^2}(\varphi f)$.
- If θ is an extreme point of the unit ball in H^{∞} $(\int_{\mathbb{T}} \ln(1-|\theta|^2)|dz| = -\infty \iff \int_{\mathbb{T}} \ln w|dz| = -\infty, \ w \text{ density of } \mu) \text{ then } \mathcal{H}(\theta) \text{ is canonically isomorphic to the model space } \mathcal{K}_{\theta} \text{ in the de Branges-Rovnyak transcription, see [9].}$
- His measure μ coincides with the Clark measure $\widetilde{\mu}_{\alpha}$,

$$\alpha = \frac{1+\gamma}{1+\overline{\gamma}};$$

the formulas are the same as Clark's.

Bibliography I

- [1] D. N. Clark, *One dimensional perturbations of restricted shifts*, J. Anal. Math., **25** (1972), 169–191.
- [2] V. Kapustin, A. Poltoratski, *Boundary convergence of vector-valued pseudocontinuable functions*. J. Funct. Anal., **238** (2006), no. 1, 313–326.
- [3] C. Liaw and S. Treil, Rank one perturbations and singular integral operators, J. Funct. Anal., **257** (2009), no. 6, 1947–1975.
- [4] C. Liaw and S. Treil, *Regularizations of general singular integral operators*, Rev. Mat. Iberoam., **29** (2013), no. 1, 53–74.
- [5] C. Liaw and S. Treil, *Clark model in general situation*, (with C. Liaw), Journal d'Analyse Mathmatique, 130 (2016), 287–328, see also arXiv:1308.3298 [math.FA].

Bibliography II

- [6] C. Liaw and S. Treil, *General Clark model for finite rank perturbations*, arXiv:1706.01993 [math.FA], 2017, 42 pp.
- [7] N. Nikolski and V. Vasyunin, *Elements of spectral theory in terms of the free function model. I. Basic constructions*, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998, pp. 211–302.
- [8] N. Nikolskiĭ and V. Vasyunin, Notes on two function models, The Bieberbach conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 113–141.

Bibliography III

- [9] N. Nikolskiĭ and V. Vasyunin, A unified approach to function models, and the transcription problem, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), Oper. Theory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 405–434.
- [10] A. G. Poltoratskii, *Boundary behavior of pseudocontinuable functions*, Algebra i Analiz **5** (1993), no. 2, 189–210, engl. translation in *St. Petersburg Math. J.*, 5(2): 389–406, 1994.
- [11] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons Inc., New York, 1994, A Wiley-Interscience Publication.

Bibliography IV

[12] B. Sz.-Nagy, C. Foiaş, H. Bercovici, and L. Kérchy, Harmonic analysis of operators on Hilbert space, second ed., Universitext, Springer, New York, 2010. Original edition: B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson et Cie, Paris, 1967. Translated from the French and revised, North-Holland Publishing Co., Amsterdam, 1970.