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Finite rank perturbations

U unitary in H, subset R ⊂ H is fixed, dimR = d.

Operators K, RanK ⊂ R, such that U +K is unitary (contraction)
are parametrized by d× d unitary (contractive) matrices Γ: namely
fix unitary B : Cd → R then unitary (contractive) d× d matrices Γ
parametrize all unitary (contractive) perturbed operators

T
Γ

= U + B(Γ− I)B∗U

Indeed, trivial when U = I, and right multiplying by U get the
formula.

Familiar parametrization for rank one perturbations

Tγ = U + (γ − 1)bb∗U = U + (γ − 1)b(b∗)
∗, b∗ = U∗b.

‖b‖ = 1.
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Finite rank perturbations

T
Γ

= U + B(Γ− I)B∗U, Γ : Cd → Cd.

WLOG R = RanB is *-cyclic.

If Γ is a strict contraction, i.e. ‖Γx‖ < ‖x‖ ∀x, then T
Γ

is a
completely non-unitary (c.n.u.) contraction.
C.n.u. means that there is no a reducing subspace on which the
operator is unitary.

As c.n.u. T
Γ

admits a functional model M
Γ

=M
TΓ
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Goal

T
Γ

= U + B(Γ− I)B∗U, Γ : Cd → Cd, ‖Γ‖ < 1.

Consider U in its spectral representation.

We assumed that RanB is *-cyclic, so T
Γ

is c.n.u.

T
Γ

is unitarily equivalent to its functional model M
Γ

: Kθ → Kθ,
(for example Sz.-Nagy-Foiaş model), where θ = θ

T
is the

characteristic function.

Want to describe the Clark operator, i.e. a unitary operator Φ = Φ
Γ

such that
T

Γ
Φ

Γ
= Φ

Γ
M

Γ
.
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U in spectral representation

WLOG assume that U = Mξ in

H =

ˆ ⊕
T
E(ξ)dµ(ξ),

E(ξ) = span{ek : 1 ≤ k ≤ N(ξ)} ⊂ E, {ek}k— ONB in E.

H ⊂ L2(µ;E):

H = {f ∈ L2(µ;E) : f(ξ) ∈ E(ξ) µ-a.e.}.

Define matrix function B, B(ξ) : Cd → E(ξ) ⊂ E,

B(ξ)e = Be(ξ), e ∈ Cd.

RanB is *-cyclic iff

RanB(ξ) = E(ξ) µ-a.e.
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Functional model for a a c.n.u. contraction.

The model M for a contraction is not a multiplication operator, it
cannot be.

It is a compression of a multiplication operator

M = PKMz

∣∣∣
K
,

where K is an appropriate subspace of a (generally vector valued)
L2 space.

The vector-valued L2 space comes from the spectral representation
of the minimal unitary dilation U of T (will be explained later)

The characteristic function θ is a unitary invariant of T and main
object in the theory of the model.
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Following Nikolskii–Vasyunin [7] the functional model is constructed as
follows:

1 For a contraction T : K → K consider its minimal unitary dilations
U : H → H, K ⊂ H,

Tn = PKUn
∣∣ K, n ≥ 0.

2 Pick a spectral representation of U
3 Work out formulas in this spectral representation

4 Model subspace K = Kθ is usually a subspace of a weighted space
L2(D∗ ⊕D,W ), D ∼= D

T
, D∗ ∼= D

T ∗ with some operator-valued
weight.

5 Model operator M is a compression of the model for U , i.e. of the
multiplication operator, M = PKMz

∣∣
K.

Specific representations give us a transcription of the model.
Among common transcriptions are: the Sz.-Nagy–Foiaş transcription,
the de Branges–Rovnyak transcription, Pavlov transcription.
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Characteristic function

Let T be a c.n.u.
Defect operators and subspaces,

D
T

:= (I− T ∗T )1/2, D
T ∗ := (I− TT ∗)1/2,

D
T

:= clos RanD
T
, D

T ∗ := clos RanD
T ∗ .

Let dimD = dimD
T

, dimD∗ = dimD
T ∗ , and let

V : D
T
→ D, V∗ : D

T ∗ → D∗

be unitary operators (coordinate operators).
The characteristic function θ = θ

T
= θ

T,V,V∗
, θ(z) : D→ D∗ is defined

as

θT (z) = V∗

(
−T + zDT ∗

(
IH − zT

∗)−1
DT

)
V ∗
∣∣∣
D
, z ∈ D.
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Sz.-Nagy–Foiaş and de Branges–Rovnyak transcriptions

Sz.-Nagy–Foiaş: H = L2(D∗ ⊕D) (non-weighted, W ≡ I).

Kθ :=

(
H2

D∗
clos ∆L2

D

)
	
(

θ
∆

)
H2

D,

where ∆(z) := (1− θ(z)∗θ(z))1/2, z ∈ T.

de Branges–Rovnyak: H = L2(D∗ ⊕D,W
[−1]
θ ), where

Wθ(z) =

(
I θ(z)

θ(z)∗ I

)
and W

[−1]
θ is the Moore–Penrose inverse of Wθ. Kθ is given by{(

g+

g−

)
: g+ ∈ H2(D∗), g− ∈ H2

−(D), g− − θ∗g+ ∈ ∆L2(D)

}
.
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Defects and characteristic function for TΓ

Recall: T
Γ

= U + B(Γ− I)B∗U , Γ : Cd → Cd, ‖Γ‖ < 1.

DTΓ
= Ran(B∗U)∗ = RanU∗B and DT ∗

Γ
= RanB

In the scalar case DTγ and DT ∗
γ

are spanned by the vectors ξ̄ and 1
respectively.

Characteristic function θ
T

of a contraction T is defined as

θT (z) = V∗

(
−T + zDT ∗

(
IH − zT

∗)−1
DT

)
V ∗
∣∣∣
D
, z ∈ D.

In our case V∗ = B∗, V = (B∗U)∗ = U∗B,

T
Γ

= U + B(Γ− I)B∗U, Γ : Cd → Cd, ‖Γ‖ < 1.

and (I− zU∗)−1 is just the multiplication by (1− zξ̄)−1.
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To compute it use Woodbury inversion formula:
if B,C : E → H (in applications dimE is small), then

(IH − CB
∗)−1 = IH + C(I

E
−B∗C)−1B∗.

To get this formula just decompose (IH − CB∗)−1 using geometric
series. A formal proof can be obtained just by checking.

In rank one case we get the Sherman–Morrison inversion formula:

(I − cb∗)−1 = I +
1

d
cb∗, d = (c, b) = b∗c.

I − zT ∗Γ is a finite rank perturbation of I − zU∗1 = I − zMξ;

The inverse of I − zMξ is multiplication by (1− zξ)−1, so Cauchy
integrals appear.
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Cauchy Transforms

Define Cauchy integrals

C1τ(z) :=

ˆ
T

ξzdτ(ξ)

1− ξz
, C2τ(z) :=

ˆ
T

1 + ξz

1− ξz
dτ(ξ).

Consider matrix-valued measure B(ξ)∗B(ξ)dµ(ξ) (B∗Bµ as
shorthand), and let

F1(z) := C1[B∗Bµ](z), F2(z) := C2[B∗Bµ](z), z ∈ D

be the corresponding matrix-valued Cauchy transforms
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Characteristic function for TΓ

Characteristic function θγ of Tγ :

θγ(z) = −γ +
(1− |γ|2)C1µ(z)

1 + (1− γ)C1µ(z)
=

(1− γ)C2µ(z)− (1 + γ)

(1− γ)C2µ(z) + (1 + γ)
,

Note that θγ(0) = −γ, because C1µ(0) = 0

In the matrix case

θ
Γ

(z) = −Γ +D
Γ∗F1(z)

(
I
D
− (Γ∗ − I

D
)F1(z)

)−1
D

Γ

= −Γ +D
Γ∗

(
I
D
− F1(z)(Γ∗ − I

D
)
)−1

F1(z)D
Γ
,
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Characteristic function for T0

For γ = 0

θ0(z) =
C1µ(z)

1 + C1µ(z)
=
C2µ(z)− 1

C2µ(z) + 1
, z ∈ D.

For Γ = 0

θ
0
(z) = F1(z)(I + F1(z))−1 = (I + F1(z))−1F1(z)

= (F2(z)− I)(F2(z) + I)−1 = (F2(z) + I)−1(F2(z)− I).
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LFTs for characteristic functions

In the scalar case

θγ(z) =
θ0(z)− γ
1− γθ0(z)

,

In the matrix case

θ
Γ

= D−1

Γ∗ (θ
0
− Γ)(I

D
− Γ∗θ

0
)−1D

Γ

= D
Γ∗ (I

D
− θ

0
Γ∗)−1(θ

0
− Γ)D−1

Γ
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“Model” case of rank one unitary perturbations

Recall: Uα = U1 + (α− 1)b(b∗)
∗, |α| = 1

U1 = Mξ in L2(µ), µ(T) = 1, b ≡ 1, b∗ = U∗1 b ≡ ξ

Let µα be the spectral measure of Uα corresponding to the vector b.

Want to find a unitary operator Vα : L2(µ)→ L2(µα) such that
Vαb = 1 ∈ L2(µα) and such that

VαUα = MzVα.

Case of self-adjoint perturbations was treated earlier by Liaw–Treil in [3].
This case is treated similarly.
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Pretending to be a physicist

Let Vα be an integral operator with kernel K(z, ξ).

Uα = Mξ + (α− 1)bb∗∗, so we can rewrite the relation
VαUα = MzVα as

VαMξ = MzVα − (1− α)Vαbb∗∗.

We know that Vαb = 1, b∗ = ξ, so Vαbb∗∗ is an integral operator
with kernel ξ

K(z, ξ)ξ = zK(z, ξ)− (α− 1)ξ.

Solving for K we get

K(z, ξ) = (1− α)
ξ

ξ − z
= (1− α)

1

1− ξz
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Commutation relations and Cauchy type integrals

A general principle

Rank one commutation relations like

VMξ = MzV + cb∗

usually give singular integral representations for V.
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First representation for Vα

Theorem (Repesentation of Vα)

The unitary operator Vα : L2(µ)→ L2(µα) such that Vαb = 1 ∈ L2(µα)
and such that

VαUα = MzVα.

is given by

Vαf(z) = f(z) + (1− α)

ˆ
T

f(ξ)− f(z)

1− ξ̄z
dµ(ξ)

for f ∈ C1(T)
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Idea of the proof

Recalling that Uα = U1 + (α− 1)bb∗∗ rewrite VαUα = MzVα as

VαU1 = MzVα + (1− α)(Vαb)b∗∗

Right multiplying by U1 we get

VαU1U1 = MzVαU1 + (1− α)(Vαb)b∗∗U1.

and applying the previous identity to VαU1 in the right hand side,
we get

VαU2
1 = M2

zVα + (1− α) [(MzVαb)b∗∗ + (Vαb)b∗∗U1]

By induction we get

VαUn1 = Mn
z Vα + (1− α)

n∑
k=1

Mk−1
z (Vαb)b∗∗Un−k1 .

Applying to b ≡ 1 and summing geometric progression we get the
formula for f(ξ) = ξn, n ≥ 0.
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Idea of the proof, continued

To get the formula for ξ
n

we use VαU∗α = MzVα, which is obtained
by taking adjoint in VαUα = MzVα.

Extend the formula from trig. polynomials to f ∈ C1 by standard
approximation reasoning.

A general statement

Rank one commutation relations like

VMξ = MzV + cb∗

usually give singular integral representations for V.
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Singular integral operators

Recall that Vαf(z) = f(z) + (1− α)

ˆ
T

f(ξ)− f(z)

1− ξ̄z
dµ(ξ)

Theorem (Regularization of the weighted Cauchy transform)

The integral operators Tr = Tαr : L2(µ)→ L2(µα) with kernels
1/(1− rξz), r ∈ R+ \ {1} are uniformly bounded.

Let Tf(z) :=
´
T
f(ξ)

1−ξzdµ(ξ); well defined for z /∈ supp f

Since Vα is bounded, we get for f, g ∈ C1, supp f ∩ supp g = ∅

(Tf, g)
L2(µα)

≤ C‖f‖
L2(µ)

‖g‖
L2(µα)

By a theorem of Liaw–Treil [4] this implies uniform boundedness of
the regularizations Tr if the measures µ and µα do not have
common atoms (U1 and Uα do not have common eigenvalues).
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Singular integral operators

Uniform boundedness of Tr together with µα-a.e. convergence of
Trf imply existence of w.o.t.-limits Tα± = w.o.t.- limr→1∓ Tr.
Using Tα± we can rewrite the representation

Vαf(z) = f(z) + (1− α)

ˆ
T

f(ξ)− f(z)

1− ξ̄z
dµ(ξ)

as
Vαf = [1− (1− α)Tα±1]f + (1− α)Tα±f.

Tα± : L2(µ)→ L2(µα), Tα±f is given by boundary values of C[fµ],
Cτ(z) =

´
T(1− ξ̄z)−1dτ(ξ).

(µα)a-a.e. convergence follows from classical results about jumps of
Cauchy transform; (µα)s-a.e. convergence can be obtained from
Poltoratskii’s theorem about boundary values of the normalized
Cauchy transform, see [10].
For the weak convergence it is enough to have µα-a.e. convergence
of Trf for f ∈ C1, which can be proved using elementary methods.



25

Main objects: Finite rank perturbations and models
Toward a formula for the adjoint Clark operator

Clark operator and its adjoint in matrix case

Spectral representation of unitary perturbations
Model, agreement of parametrizing operators
Representation formula, rank 1 case

Model, agreement of coordinate and parametrizing
operators

Let T be a c.n.u. contraction, V : D
T

= D, V : D
T ∗ = D∗ unitary

operators (coordinate operators),

θ = θ
T,V,V∗

∈ H∞(D→ D∗) its characteristic function,
Mθ : Kθ → Kθ the model operator.

We say that unitary C : D→ DMθ
, C∗ : D∗ → DM∗

θ
agree with V ,

V∗ if

C∗ = V Φ
∣∣∣
DMθ

, C∗∗ = V∗Φ
∣∣∣
DM∗

θ

.

for a unitary Φ : Kθ → H such that TΦ = ΦMθ
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Model, agreement of coordinate and parametrizing
operators

In other words, the following diagrams commute:

D
T

D D∗ D
T ∗

DMθ
DM∗

θ

V V ∗∗

Φ C ΦC∗
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Model: agreement

In the Sz.-Nagy–Foiaş notation

C∗e∗ =

(
I− θ(z)θ∗(0)
−∆(z)θ∗(0)

)
(I− θ(0)θ∗(0))−1/2 e∗, e∗ ∈ D∗,

Ce =

(
z−1 (θ(z)− θ(0))

z−1∆(z)

)
(I− θ∗(0)θ(0))−1/2 e, e ∈ D,

For the Clark case T = T
Γ

= T + B(Γ− I)B∗U , V = U∗B, V∗ = B,

D = D∗ = Cd we get, noticing that θ(0) = −Γ that

Ce(z) = C(z)e, C∗e(z) = C∗(z)e,

where

C∗(z) =

(
I + θ(z)Γ∗

∆(z)Γ∗

)
D−1

Γ∗ ,

C(z) = z−1

(
θ(z) + Γ

∆(z)

)
D−1

Γ
;
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Theorem (A “universal” representation formula)

In the rank one case the adjoint Clark operator Φ∗, (C, C∗ agree with
Clark model) is given for f ∈ C1(T) by

Φ∗γf(z) = C∗(z)f(z) + C1(z)

ˆ
f(ξ)− f(z)

1− ξz
dµ(ξ), z ∈ T,

where C1(z) = C∗(z)− zC(z)

Regularizing Cauchy Transform we get the following representation of the
Φ∗,

Φ∗f(z) = A(z)f(z) + C1(z)C+[fµ](z),

where A = C∗ − C1C+µ,

Cτ(z) =

ˆ
T

1

1− ξ̄z
dτ(ξ).

C+ means boundary values of Cτ(z), z ∈ D.
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Idea of the proof

Write, denoting C2(z) := zC(z),

Mθγ = Mz − C2C
∗ − θγ(0)C∗C

∗

= Mz + (γC∗ − C2)C∗.

Rank one perturbation of Mz! Should get at most rank 2
commutation relation.

Using this identity rewrite Φ∗γTγ =MθγΦ∗γ as

Φ∗γU + (γ − 1)C∗b
∗U = MzΦ

∗
γ + (γC∗ − C2)b∗U

or equivalently

Φ∗γU = MzΦ
∗
γ + (C∗ − C2)b∗U.

We got rank one commutation relation!

Commutation relations imply integral representation.
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Idea of the proof, difficulties

Formally the right side of

Φ∗γU = MzΦ
∗
γ + (C∗ − C2)b∗U. (∗)

acts from L2(µ) to outside of Kθ.

To get Φ∗γξ
n

we use the commutant relation

Φ∗γU
∗ = MzΦ

∗
γ + (C −MzC∗)b

∗

= MzΦ
∗
γ −Mz(C∗ − C2)b∗,

which cannot be obtained by taking the adjoint of (∗).

It is a miracle that the formulas for Φ∗γξ
n and Φ∗γξ

n
agree.
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A universal formula for adjoint operator in matrix case
Adjoint Clark operator Φ∗

ΓDirect Clark operator Φ
Γ

Universal formula: for b ∈ RanB and scalar h ∈ C1(T)

(Φ∗hb)(z) = h(z)C∗(z)B
∗b+ C1(z)

ˆ
T

h(ξ)− h(z)

1− zξ
B∗(ξ)b(ξ)dµ(ξ)

where, recall C1(z) = C∗(z)− zC(z).

Matrix function B is defined by B(ξ)e = (Be)(ξ), e ∈ Cd, so
B∗b =

´
TB(ξ)∗b(ξ)dµ(ξ).

As in the scalar case, Φ∗ has Cauchy transform part, plus
multiplication part.

Cauchy transform part is easy (put f = hb),

f 7→ C1C+[B∗fµ], f ∈ H ⊂ L2(µ;E).

where,recall

Cτ(z) =

ˆ
T

1

1− ξ̄z
dτ(ξ).

and C+ means boundary values of Cτ(z), z ∈ D.
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Representation in the Sz.-Nagy–Foiaş transcription

Denote by F = C+[B∗Bµ]. Recall ∆
Γ

: (I− θ∗
Γ
θ

Γ
)1/2.

The adjoint Clark operator Φ∗ : H ⊂ L2(µ : E)→ Kθ is given by

Φ∗f =

(
0

Ψ2

)
f +

(
(I + θ

Γ
Γ∗)D−1

Γ∗ F
−1

∆
Γ
D−1

Γ
(Γ∗ − I)

)
C+[B∗fµ],

with Ψ2(z) = Ψ̃2(z)R(z), where

Ψ̃2(z) = ∆
Γ
D−1

Γ
(Γ∗ + (I− Γ∗)F (z))

= ∆
Γ
D−1

Γ
(I− Γ∗θ

0
(z))F (z) a.e. on T,

and R is a measurable right inverse for the matrix-valued function B.

Formula does not depend on the choice of R, because µac-a.e.

Ψ̃∗2Ψ̃2 = F ∗∆2
0
F = B∗Bw

and so Ψ2(ξ)∗Ψ2(ξ) = w(ξ)I
E(ξ)

; here w is the density of µ
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Matrix case: spectral representation with matrix weight

Consider the weighted space L2(B∗Bµ),

‖f‖2
L2(B∗Bµ)

:=

ˆ
T

(
B(ξ)∗B(ξ)f(ξ), f(ξ)

)
Cd

dµ(ξ)

The operator U : L2(B∗Bµ)→ H, Uf = Bf is unitary.

The adjoint Clark operator Φ∗ : L2(B∗Bµ)→ Kθ is given by

Φ∗f =

(
0

Ψ̃2

)
f +

(
(I + θ

Γ
Γ∗)D−1

Γ∗ F
−1

∆D−1
Γ

(Γ∗ − I)

)
C+[B∗Bfµ],

where

F = C+[B∗Bµ], Ψ̃2(z) = ∆D−1
Γ

(Γ∗ + (I− Γ∗)F (z))
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Direct Clark operator (a.c. part)

Let Φ∗
Γ
f = h =

(
h1

h2

)
. We computed that

(
h1

h2

)
=

(
0

Ψ2

)
f +

(
(I + θ

Γ
Γ∗)D−1

Γ∗ F
−1

∆
Γ
D−1

Γ
(Γ∗ − I)

)
C+[B∗fµ].

Subtract from the second component an appropriate left multiple of the
first component to get rid of C+[B∗fµ]:

Ψ2f = h2 −∆
Γ
D−1

Γ
(Γ∗ − I)FD

Γ∗ (I + θ
Γ

Γ∗)−1h1

Left multiplying by Ψ∗2 and using Ψ∗2Ψ2 = w(ξ)I
E(ξ)

, we get a.c. part

wf = R∗F ∗(I− θ∗
0
Γ)D−1

Γ
∆

Γ
h2

−R∗F ∗(I− θ∗
0
Γ)D−1

Γ
∆2

Γ
D−1

Γ
(Γ∗ − I)FD

Γ∗ (I + θ
Γ

Γ∗)−1h1

= R∗F ∗(I− θ∗
0
Γ)D−1

Γ
∆

Γ
h2

−R∗F ∗∆2
0
(I− Γ∗θ

0
)−1(Γ∗ − I)FD

Γ∗ (I + θ
Γ

Γ∗)−1h1
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Direct Clark operator (singular part)

Lemma (A. Poltoratskii)

Let f ∈ L2(T, µ;Cd). Then the nontagential boundary values of
C[fµ](z)/C[µ](z), z ∈ D exist and equal f(ξ), µs-a.a. ξ ∈ T.

We had (
h1

h2

)
=

(
0

Ψ2

)
f +

(
(I + θ

Γ
Γ∗)D−1

Γ∗ F
−1

∆
Γ
D−1

Γ
(Γ∗ − I)

)
C+[B∗fµ].

Divide by C[µ] and solve µs-a.e. for B∗f in the first component:

B∗f =
1

C[µ]
FD

Γ∗ (I + θ
Γ

Γ∗)−1h1 µs-a.e.

Left multiplying this identity by R∗ we get that

Φh = f =
1

C[µ]
R∗FD

Γ∗ (I + θ
Γ

Γ∗)−1h1 µs-a.e.
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Comparison with Clark model

D. Clark started with model operator Mθ,
(θ inner ⇐⇒ µ is purely singular) and considered it all unitary rank
one perturbations.

In our model it corresponds considering operator
Uγ = U1 + (γ − 1)bb∗1, γ = −θ(0), then all unitary rank one
perturbations are exactly the operators Uα, |α| = 1.

Clark measures µ̃α are the spectral measures of the operators Uα.

If θ(0) = 0 them µ̃α = µα and the Clark operators coincide with
ours.

If θ(0) 6= 0 µ̃α is a multiple µα, and the operators differ by a factor
c(γ).

In Clark model µ̃α is not a probability measure, |c(γ)| compensate
for that.
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Comparison with Sarason’s model

D. Sarason in [11] presented a unitary operator between
H2(µ) = span{zn : n ∈ Z+} and the de Branges space H(θ); like
Clark, he started with a model operator in Kθ
The space H(θ) ⊂ H2 is defined as a range (I − TθTθ∗)1/2H2

endowed with the range norm (the minimal norm of the preimage);
Tϕ : H2 → H2 is a Toeplitz opearator, Tϕf = PH2(ϕf).

If θ is an extreme point of the unit ball in H∞

(

ˆ
T

ln(1− |θ|2)|dz| = −∞ ⇐⇒
ˆ
T

lnw|dz| = −∞, w density of

µ) then H(θ) is canonically isomorphic to the model space Kθ in the
de Branges–Rovnyak transcription, see [9].

His measure µ coincides with the Clark measure µ̃α,

α =
1 + γ

1 + γ
;

the formulas are the same as Clark’s.
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